File size: 9,701 Bytes
9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b 9d9638e 0dec37b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import sys
import gradio as gr
import subprocess
import json
import torch
from pathlib import Path
# Set environment variables for HF Spaces
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"
# Pre-download models cache
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"
# Fix potential Hunyuan Video Avatar issues
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
def setup_environment():
"""Setup environment for HF Spaces with WanGP v6.3"""
# Install additional dependencies if needed
dependencies = [
"sageattention==1.0.6",
"insightface",
"facexlib",
"diffusers>=0.30.0",
"transformers>=4.44.0",
"accelerate>=0.34.0",
"xformers",
"opencv-python",
"imageio[ffmpeg]",
"moviepy",
"librosa",
"soundfile"
]
for dep in dependencies:
try:
module_name = dep.split("==")[0].split(">=")[0]
__import__(module_name.replace("-", "_"))
except ImportError:
print(f"Installing {dep}...")
subprocess.run([sys.executable, "-m", "pip", "install", dep],
check=True, capture_output=True)
def download_essential_models():
"""Pre-download essential models for faster startup"""
try:
from huggingface_hub import snapshot_download
print("Downloading Hunyuan Video Avatar models...")
# Download Hunyuan Video Avatar base models
snapshot_download(
repo_id="tencent/HunyuanVideo-Avatar",
cache_dir="/tmp/hf_cache",
allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
ignore_patterns=["*.mp4", "*.avi", "*.mov"] # Skip demo videos
)
# Download base Hunyuan Video model
snapshot_download(
repo_id="tencent/HunyuanVideo",
cache_dir="/tmp/hf_cache",
allow_patterns=["*.safetensors", "*.json", "*.txt"],
ignore_patterns=["*.mp4", "*.avi"]
)
print("β
Models downloaded successfully!")
except Exception as e:
print(f"Model download warning: {e}")
print("Models will be downloaded on-demand during first use.")
def create_hf_config():
"""Create optimized config for HF Spaces deployment"""
config = {
"model_settings": {
"profile": 3, # Optimized for A10G Large
"quantize_transformer": True,
"attention_mode": "sage",
"compile": False, # Disable for stability on HF
"teacache": "2.0"
},
"avatar_settings": {
"max_frames": 120, # ~5 seconds at 24fps
"resolution": "512x512", # Balanced quality/performance
"emotion_control": True,
"multi_character": True
},
"memory_optimization": {
"enable_vae_tiling": True,
"enable_cpu_offload": True,
"max_batch_size": 1,
"gradient_checkpointing": True
},
"audio_processing": {
"sample_rate": 16000,
"max_duration": 15, # seconds
"supported_formats": ["wav", "mp3", "m4a"]
}
}
config_path = "/tmp/hf_config.json"
with open(config_path, "w") as f:
json.dump(config, f, indent=2)
return config
class WanGPInterface:
"""WanGP Interface for HF Spaces"""
def __init__(self, config):
self.config = config
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.models_loaded = False
def load_models(self):
"""Load models on demand"""
if self.models_loaded:
return
try:
print("Loading Hunyuan Video Avatar models...")
# Model loading logic would go here
# This is a placeholder for the actual model loading
self.models_loaded = True
print("β
Models loaded successfully!")
except Exception as e:
print(f"β Error loading models: {e}")
raise e
def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
"""Generate avatar video from audio and image"""
try:
self.load_models()
# Placeholder for actual generation logic
# This would call the real Hunyuan Video Avatar pipeline
return "Video generation completed! (This is a placeholder)"
except Exception as e:
return f"Error: {str(e)}"
def generate_video(self, prompt, duration=5, resolution="512x512"):
"""Generate video from text prompt"""
try:
self.load_models()
# Placeholder for video generation logic
return f"Generated video for prompt: {prompt}"
except Exception as e:
return f"Error: {str(e)}"
def create_gradio_interface(wangp_interface):
"""Create Gradio interface for WanGP"""
with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
gr.HTML("""
<div style="text-align: center; margin-bottom: 20px;">
<h1>π WanGP v6.3 - Hunyuan Video Avatar</h1>
<p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
</div>
""")
with gr.Tabs():
# Avatar Generation Tab
with gr.TabItem("π Avatar Generation"):
with gr.Row():
with gr.Column():
audio_input = gr.Audio(
label="Audio Input",
type="filepath",
format="wav"
)
avatar_image = gr.Image(
label="Avatar Image",
type="filepath"
)
emotion_control = gr.Dropdown(
choices=["neutral", "happy", "sad", "angry", "surprised"],
value="neutral",
label="Emotion Control"
)
avatar_prompt = gr.Textbox(
label="Additional Prompt (Optional)",
placeholder="Describe additional details..."
)
generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
with gr.Column():
avatar_output = gr.Video(label="Generated Avatar Video")
avatar_status = gr.Textbox(label="Status", interactive=False)
# Text-to-Video Tab
with gr.TabItem("πΉ Text to Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Video Prompt",
placeholder="Describe the video you want to generate...",
lines=3
)
duration_slider = gr.Slider(
minimum=2,
maximum=10,
value=5,
step=1,
label="Duration (seconds)"
)
resolution_dropdown = gr.Dropdown(
choices=["512x512", "768x768", "1024x1024"],
value="512x512",
label="Resolution"
)
generate_video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False)
# Event handlers
generate_avatar_btn.click(
fn=wangp_interface.generate_avatar_video,
inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
outputs=[avatar_status]
)
generate_video_btn.click(
fn=wangp_interface.generate_video,
inputs=[video_prompt, duration_slider, resolution_dropdown],
outputs=[video_status]
)
gr.HTML("""
<div style="text-align: center; margin-top: 20px; color: #666;">
<p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
</div>
""")
return demo
if __name__ == "__main__":
print("π Starting WanGP v6.3 with Hunyuan Video Avatar...")
# Setup environment
setup_environment()
# Create configuration
config = create_hf_config()
# Download models in background
try:
download_essential_models()
except Exception as e:
print(f"Model download failed: {e}")
# Initialize WanGP interface
wangp_interface = WanGPInterface(config)
# Create and launch Gradio interface
demo = create_gradio_interface(wangp_interface)
print("β
Setup complete! Launching application...")
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # HF Spaces handles sharing
debug=False,
show_error=True
) |