File size: 9,701 Bytes
9d9638e
 
 
 
 
0dec37b
 
9d9638e
 
 
 
 
 
 
 
 
 
 
0dec37b
9d9638e
 
 
 
0dec37b
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
0dec37b
 
 
 
 
 
 
 
9d9638e
 
 
 
0dec37b
 
 
 
9d9638e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
 
9d9638e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dec37b
 
9d9638e
 
 
 
0dec37b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9638e
 
 
0dec37b
9d9638e
0dec37b
 
9d9638e
0dec37b
 
 
 
 
 
 
 
 
 
 
 
9d9638e
 
 
0dec37b
 
9d9638e
 
0dec37b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import os
import sys
import gradio as gr
import subprocess
import json
import torch
from pathlib import Path

# Set environment variables for HF Spaces
os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0"
os.environ["GRADIO_SERVER_PORT"] = "7860"

# Pre-download models cache
os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache"

# Fix potential Hunyuan Video Avatar issues
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"

def setup_environment():
    """Setup environment for HF Spaces with WanGP v6.3"""
    # Install additional dependencies if needed
    dependencies = [
        "sageattention==1.0.6",
        "insightface",
        "facexlib", 
        "diffusers>=0.30.0",
        "transformers>=4.44.0",
        "accelerate>=0.34.0",
        "xformers",
        "opencv-python",
        "imageio[ffmpeg]",
        "moviepy",
        "librosa",
        "soundfile"
    ]
    
    for dep in dependencies:
        try:
            module_name = dep.split("==")[0].split(">=")[0]
            __import__(module_name.replace("-", "_"))
        except ImportError:
            print(f"Installing {dep}...")
            subprocess.run([sys.executable, "-m", "pip", "install", dep], 
                         check=True, capture_output=True)

def download_essential_models():
    """Pre-download essential models for faster startup"""
    try:
        from huggingface_hub import snapshot_download
        
        print("Downloading Hunyuan Video Avatar models...")
        
        # Download Hunyuan Video Avatar base models
        snapshot_download(
            repo_id="tencent/HunyuanVideo-Avatar", 
            cache_dir="/tmp/hf_cache",
            allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"],
            ignore_patterns=["*.mp4", "*.avi", "*.mov"]  # Skip demo videos
        )
        
        # Download base Hunyuan Video model
        snapshot_download(
            repo_id="tencent/HunyuanVideo",
            cache_dir="/tmp/hf_cache", 
            allow_patterns=["*.safetensors", "*.json", "*.txt"],
            ignore_patterns=["*.mp4", "*.avi"]
        )
        
        print("βœ… Models downloaded successfully!")
        
    except Exception as e:
        print(f"Model download warning: {e}")
        print("Models will be downloaded on-demand during first use.")

def create_hf_config():
    """Create optimized config for HF Spaces deployment"""
    config = {
        "model_settings": {
            "profile": 3,  # Optimized for A10G Large
            "quantize_transformer": True,
            "attention_mode": "sage",
            "compile": False,  # Disable for stability on HF
            "teacache": "2.0"
        },
        "avatar_settings": {
            "max_frames": 120,  # ~5 seconds at 24fps
            "resolution": "512x512",  # Balanced quality/performance
            "emotion_control": True,
            "multi_character": True
        },
        "memory_optimization": {
            "enable_vae_tiling": True,
            "enable_cpu_offload": True,
            "max_batch_size": 1,
            "gradient_checkpointing": True
        },
        "audio_processing": {
            "sample_rate": 16000,
            "max_duration": 15,  # seconds
            "supported_formats": ["wav", "mp3", "m4a"]
        }
    }
    
    config_path = "/tmp/hf_config.json"
    with open(config_path, "w") as f:
        json.dump(config, f, indent=2)
    
    return config

class WanGPInterface:
    """WanGP Interface for HF Spaces"""
    
    def __init__(self, config):
        self.config = config
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.models_loaded = False
        
    def load_models(self):
        """Load models on demand"""
        if self.models_loaded:
            return
            
        try:
            print("Loading Hunyuan Video Avatar models...")
            # Model loading logic would go here
            # This is a placeholder for the actual model loading
            self.models_loaded = True
            print("βœ… Models loaded successfully!")
        except Exception as e:
            print(f"❌ Error loading models: {e}")
            raise e
    
    def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"):
        """Generate avatar video from audio and image"""
        try:
            self.load_models()
            
            # Placeholder for actual generation logic
            # This would call the real Hunyuan Video Avatar pipeline
            
            return "Video generation completed! (This is a placeholder)"
            
        except Exception as e:
            return f"Error: {str(e)}"
    
    def generate_video(self, prompt, duration=5, resolution="512x512"):
        """Generate video from text prompt"""
        try:
            self.load_models()
            
            # Placeholder for video generation logic
            return f"Generated video for prompt: {prompt}"
            
        except Exception as e:
            return f"Error: {str(e)}"

def create_gradio_interface(wangp_interface):
    """Create Gradio interface for WanGP"""
    
    with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo:
        gr.HTML("""
        <div style="text-align: center; margin-bottom: 20px;">
            <h1>🎭 WanGP v6.3 - Hunyuan Video Avatar</h1>
            <p>Advanced AI Video Generation with Audio-Driven Human Animation</p>
        </div>
        """)
        
        with gr.Tabs():
            # Avatar Generation Tab
            with gr.TabItem("🎭 Avatar Generation"):
                with gr.Row():
                    with gr.Column():
                        audio_input = gr.Audio(
                            label="Audio Input",
                            type="filepath",
                            format="wav"
                        )
                        avatar_image = gr.Image(
                            label="Avatar Image",
                            type="filepath"
                        )
                        emotion_control = gr.Dropdown(
                            choices=["neutral", "happy", "sad", "angry", "surprised"],
                            value="neutral",
                            label="Emotion Control"
                        )
                        avatar_prompt = gr.Textbox(
                            label="Additional Prompt (Optional)",
                            placeholder="Describe additional details..."
                        )
                        generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary")
                    
                    with gr.Column():
                        avatar_output = gr.Video(label="Generated Avatar Video")
                        avatar_status = gr.Textbox(label="Status", interactive=False)
            
            # Text-to-Video Tab
            with gr.TabItem("πŸ“Ή Text to Video"):
                with gr.Row():
                    with gr.Column():
                        video_prompt = gr.Textbox(
                            label="Video Prompt",
                            placeholder="Describe the video you want to generate...",
                            lines=3
                        )
                        duration_slider = gr.Slider(
                            minimum=2,
                            maximum=10,
                            value=5,
                            step=1,
                            label="Duration (seconds)"
                        )
                        resolution_dropdown = gr.Dropdown(
                            choices=["512x512", "768x768", "1024x1024"],
                            value="512x512",
                            label="Resolution"
                        )
                        generate_video_btn = gr.Button("Generate Video", variant="primary")
                    
                    with gr.Column():
                        video_output = gr.Video(label="Generated Video")
                        video_status = gr.Textbox(label="Status", interactive=False)
        
        # Event handlers
        generate_avatar_btn.click(
            fn=wangp_interface.generate_avatar_video,
            inputs=[audio_input, avatar_image, avatar_prompt, emotion_control],
            outputs=[avatar_status]
        )
        
        generate_video_btn.click(
            fn=wangp_interface.generate_video,
            inputs=[video_prompt, duration_slider, resolution_dropdown],
            outputs=[video_status]
        )
        
        gr.HTML("""
        <div style="text-align: center; margin-top: 20px; color: #666;">
            <p>Powered by Hunyuan Video Avatar & WanGP v6.3</p>
        </div>
        """)
    
    return demo

if __name__ == "__main__":
    print("πŸš€ Starting WanGP v6.3 with Hunyuan Video Avatar...")
    
    # Setup environment
    setup_environment()
    
    # Create configuration
    config = create_hf_config()
    
    # Download models in background
    try:
        download_essential_models()
    except Exception as e:
        print(f"Model download failed: {e}")
    
    # Initialize WanGP interface
    wangp_interface = WanGPInterface(config)
    
    # Create and launch Gradio interface
    demo = create_gradio_interface(wangp_interface)
    
    print("βœ… Setup complete! Launching application...")
    
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,  # HF Spaces handles sharing
        debug=False,
        show_error=True
    )