import os import sys import gradio as gr import subprocess import json import torch from pathlib import Path # Set environment variables for HF Spaces os.environ["GRADIO_SERVER_NAME"] = "0.0.0.0" os.environ["GRADIO_SERVER_PORT"] = "7860" # Pre-download models cache os.environ["HF_HUB_CACHE"] = "/tmp/hf_cache" os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/hf_cache" # Fix potential Hunyuan Video Avatar issues os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512" def setup_environment(): """Setup environment for HF Spaces with WanGP v6.3""" # Install additional dependencies if needed dependencies = [ "sageattention==1.0.6", "insightface", "facexlib", "diffusers>=0.30.0", "transformers>=4.44.0", "accelerate>=0.34.0", "xformers", "opencv-python", "imageio[ffmpeg]", "moviepy", "librosa", "soundfile" ] for dep in dependencies: try: module_name = dep.split("==")[0].split(">=")[0] __import__(module_name.replace("-", "_")) except ImportError: print(f"Installing {dep}...") subprocess.run([sys.executable, "-m", "pip", "install", dep], check=True, capture_output=True) def download_essential_models(): """Pre-download essential models for faster startup""" try: from huggingface_hub import snapshot_download print("Downloading Hunyuan Video Avatar models...") # Download Hunyuan Video Avatar base models snapshot_download( repo_id="tencent/HunyuanVideo-Avatar", cache_dir="/tmp/hf_cache", allow_patterns=["*.safetensors", "*.json", "*.txt", "*.bin"], ignore_patterns=["*.mp4", "*.avi", "*.mov"] # Skip demo videos ) # Download base Hunyuan Video model snapshot_download( repo_id="tencent/HunyuanVideo", cache_dir="/tmp/hf_cache", allow_patterns=["*.safetensors", "*.json", "*.txt"], ignore_patterns=["*.mp4", "*.avi"] ) print("✅ Models downloaded successfully!") except Exception as e: print(f"Model download warning: {e}") print("Models will be downloaded on-demand during first use.") def create_hf_config(): """Create optimized config for HF Spaces deployment""" config = { "model_settings": { "profile": 3, # Optimized for A10G Large "quantize_transformer": True, "attention_mode": "sage", "compile": False, # Disable for stability on HF "teacache": "2.0" }, "avatar_settings": { "max_frames": 120, # ~5 seconds at 24fps "resolution": "512x512", # Balanced quality/performance "emotion_control": True, "multi_character": True }, "memory_optimization": { "enable_vae_tiling": True, "enable_cpu_offload": True, "max_batch_size": 1, "gradient_checkpointing": True }, "audio_processing": { "sample_rate": 16000, "max_duration": 15, # seconds "supported_formats": ["wav", "mp3", "m4a"] } } config_path = "/tmp/hf_config.json" with open(config_path, "w") as f: json.dump(config, f, indent=2) return config class WanGPInterface: """WanGP Interface for HF Spaces""" def __init__(self, config): self.config = config self.device = "cuda" if torch.cuda.is_available() else "cpu" self.models_loaded = False def load_models(self): """Load models on demand""" if self.models_loaded: return try: print("Loading Hunyuan Video Avatar models...") # Model loading logic would go here # This is a placeholder for the actual model loading self.models_loaded = True print("✅ Models loaded successfully!") except Exception as e: print(f"❌ Error loading models: {e}") raise e def generate_avatar_video(self, audio_file, avatar_image, prompt="", emotion="neutral"): """Generate avatar video from audio and image""" try: self.load_models() # Placeholder for actual generation logic # This would call the real Hunyuan Video Avatar pipeline return "Video generation completed! (This is a placeholder)" except Exception as e: return f"Error: {str(e)}" def generate_video(self, prompt, duration=5, resolution="512x512"): """Generate video from text prompt""" try: self.load_models() # Placeholder for video generation logic return f"Generated video for prompt: {prompt}" except Exception as e: return f"Error: {str(e)}" def create_gradio_interface(wangp_interface): """Create Gradio interface for WanGP""" with gr.Blocks(title="WanGP v6.3 - Hunyuan Video Avatar", theme=gr.themes.Soft()) as demo: gr.HTML("""

🎭 WanGP v6.3 - Hunyuan Video Avatar

Advanced AI Video Generation with Audio-Driven Human Animation

""") with gr.Tabs(): # Avatar Generation Tab with gr.TabItem("🎭 Avatar Generation"): with gr.Row(): with gr.Column(): audio_input = gr.Audio( label="Audio Input", type="filepath", format="wav" ) avatar_image = gr.Image( label="Avatar Image", type="filepath" ) emotion_control = gr.Dropdown( choices=["neutral", "happy", "sad", "angry", "surprised"], value="neutral", label="Emotion Control" ) avatar_prompt = gr.Textbox( label="Additional Prompt (Optional)", placeholder="Describe additional details..." ) generate_avatar_btn = gr.Button("Generate Avatar Video", variant="primary") with gr.Column(): avatar_output = gr.Video(label="Generated Avatar Video") avatar_status = gr.Textbox(label="Status", interactive=False) # Text-to-Video Tab with gr.TabItem("📹 Text to Video"): with gr.Row(): with gr.Column(): video_prompt = gr.Textbox( label="Video Prompt", placeholder="Describe the video you want to generate...", lines=3 ) duration_slider = gr.Slider( minimum=2, maximum=10, value=5, step=1, label="Duration (seconds)" ) resolution_dropdown = gr.Dropdown( choices=["512x512", "768x768", "1024x1024"], value="512x512", label="Resolution" ) generate_video_btn = gr.Button("Generate Video", variant="primary") with gr.Column(): video_output = gr.Video(label="Generated Video") video_status = gr.Textbox(label="Status", interactive=False) # Event handlers generate_avatar_btn.click( fn=wangp_interface.generate_avatar_video, inputs=[audio_input, avatar_image, avatar_prompt, emotion_control], outputs=[avatar_status] ) generate_video_btn.click( fn=wangp_interface.generate_video, inputs=[video_prompt, duration_slider, resolution_dropdown], outputs=[video_status] ) gr.HTML("""

Powered by Hunyuan Video Avatar & WanGP v6.3

""") return demo if __name__ == "__main__": print("🚀 Starting WanGP v6.3 with Hunyuan Video Avatar...") # Setup environment setup_environment() # Create configuration config = create_hf_config() # Download models in background try: download_essential_models() except Exception as e: print(f"Model download failed: {e}") # Initialize WanGP interface wangp_interface = WanGPInterface(config) # Create and launch Gradio interface demo = create_gradio_interface(wangp_interface) print("✅ Setup complete! Launching application...") demo.launch( server_name="0.0.0.0", server_port=7860, share=False, # HF Spaces handles sharing debug=False, show_error=True )