# Installation Guide This guide covers installation for different GPU generations and operating systems. ## Requirements - Python 3.10.9 - Conda or Python venv - Compatible GPU (RTX 10XX or newer recommended) ## Installation for RTX 10XX to RTX 40XX (Stable) This installation uses PyTorch 2.6.0 which is well-tested and stable. ### Step 1: Download and Setup Environment ```shell # Clone the repository git clone https://github.com/deepbeepmeep/Wan2GP.git cd Wan2GP # Create Python 3.10.9 environment using conda conda create -n wan2gp python=3.10.9 conda activate wan2gp ``` ### Step 2: Install PyTorch ```shell # Install PyTorch 2.6.0 with CUDA 12.4 pip install torch==2.6.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu124 ``` ### Step 3: Install Dependencies ```shell # Install core dependencies pip install -r requirements.txt ``` ### Step 4: Optional Performance Optimizations #### Sage Attention (30% faster) ```shell # Windows only: Install Triton pip install triton-windows # For both Windows and Linux pip install sageattention==1.0.6 ``` #### Sage 2 Attention (40% faster) ```shell # Windows pip install triton-windows pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu126torch2.6.0-cp310-cp310-win_amd64.whl # Linux (manual compilation required) git clone https://github.com/thu-ml/SageAttention cd SageAttention pip install -e . ``` #### Flash Attention ```shell # May require CUDA kernel compilation on Windows pip install flash-attn==2.7.2.post1 ``` ## Installation for RTX 50XX (Beta) RTX 50XX GPUs require PyTorch 2.7.0 (beta). This version may be less stable. ⚠️ **Important:** Use Python 3.10 for compatibility with pip wheels. ### Step 1: Setup Environment ```shell # Clone and setup (same as above) git clone https://github.com/deepbeepmeep/Wan2GP.git cd Wan2GP conda create -n wan2gp python=3.10.9 conda activate wan2gp ``` ### Step 2: Install PyTorch Beta ```shell # Install PyTorch 2.7.0 with CUDA 12.8 pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/test/cu128 ``` ### Step 3: Install Dependencies ```shell pip install -r requirements.txt ``` ### Step 4: Optional Optimizations for RTX 50XX #### Sage Attention ```shell # Windows pip install triton-windows pip install sageattention==1.0.6 # Linux pip install sageattention==1.0.6 ``` #### Sage 2 Attention ```shell # Windows pip install triton-windows pip install https://github.com/woct0rdho/SageAttention/releases/download/v2.1.1-windows/sageattention-2.1.1+cu128torch2.7.0-cp310-cp310-win_amd64.whl # Linux (manual compilation) git clone https://github.com/thu-ml/SageAttention cd SageAttention pip install -e . ``` ## Attention Modes WanGP supports several attention implementations: - **SDPA** (default): Available by default with PyTorch - **Sage**: 30% speed boost with small quality cost - **Sage2**: 40% speed boost - **Flash**: Good performance, may be complex to install on Windows ## Performance Profiles Choose a profile based on your hardware: - **Profile 3 (LowRAM_HighVRAM)**: Loads entire model in VRAM, requires 24GB VRAM for 8-bit quantized 14B model - **Profile 4 (LowRAM_LowVRAM)**: Default, loads model parts as needed, slower but lower VRAM requirement ## Troubleshooting ### Sage Attention Issues If Sage attention doesn't work: 1. Check if Triton is properly installed 2. Clear Triton cache 3. Fallback to SDPA attention: ```bash python wgp.py --attention sdpa ``` ### Memory Issues - Use lower resolution or shorter videos - Enable quantization (default) - Use Profile 4 for lower VRAM usage - Consider using 1.3B models instead of 14B models ### GPU Compatibility - RTX 10XX, 20XX: Supported with SDPA attention - RTX 30XX, 40XX: Full feature support - RTX 50XX: Beta support with PyTorch 2.7.0 For more troubleshooting, see [TROUBLESHOOTING.md](TROUBLESHOOTING.md)