File size: 5,053 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
import torch.nn as nn
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel

from vita.util.s2wrapper import forward as multiscale_forward


class SiglipVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = -2

        if not delay_load:
            self.load_model()
        else:
            self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self):
        self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
        self.image_processor.crop_size = self.image_processor.size
        self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]

        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True,
                )
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
            )
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2


class SiglipVisionTowerS2(SiglipVisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        self.s2_scales = getattr(args, "s2_scales", "384,768,1152")
        self.s2_scales = list(map(int, self.s2_scales.split(",")))
        self.s2_scales.sort()
        self.s2_split_size = self.s2_scales[0]
        self.s2_image_size = self.s2_scales[-1]

        super().__init__(vision_tower, args, delay_load)

        self.multiscale_forward = multiscale_forward

        if not delay_load:
            self.image_processor.size["height"] = self.image_processor.size[
                "width"
            ] = self.s2_image_size
            self.image_processor.crop_size["height"] = self.image_processor.crop_size[
                "width"
            ] = self.s2_image_size

    def load_model(self):
        self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name)
        self.image_processor.crop_size = self.image_processor.size
        self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name)
        self.vision_tower.requires_grad_(False)

        self.image_processor.size["height"] = self.image_processor.size[
            "width"
        ] = self.s2_image_size
        self.image_processor.crop_size["height"] = self.image_processor.crop_size[
            "width"
        ] = self.s2_image_size

        self.is_loaded = True

    @torch.no_grad()
    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(
            images.to(device=self.device, dtype=self.dtype), output_hidden_states=True
        )
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.multiscale_forward(
                    self.forward_feature,
                    image.unsqueeze(0),
                    img_sizes=self.s2_scales,
                    max_split_size=self.s2_split_size,
                )
                image_features.append(image_feature)
        else:
            image_features = self.multiscale_forward(
                self.forward_feature,
                images,
                img_sizes=self.s2_scales,
                max_split_size=self.s2_split_size,
            )

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.s2_scales)