File size: 4,258 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence


class CNNAdapter(torch.nn.Module):
    def __init__(
        self,
        enc_out_dim: int = 512,
        llm_embed_dim: int = 4096,
        kernel_size: int = 5,
    ):
        super().__init__()

        self.left_padding1 = nn.ConstantPad1d((kernel_size - 1, 0), 0.0)
        self.conv1d1 = nn.Conv1d(enc_out_dim, 2 * enc_out_dim, kernel_size, 1, 0)
        self.bn1 = nn.BatchNorm1d(2 * enc_out_dim, eps=1e-3, momentum=0.99)
        self.relu1 = nn.ReLU()

        self.left_padding2 = nn.ConstantPad1d((kernel_size - 1, 0), 0.0)
        self.conv1d2 = nn.Conv1d(2 * enc_out_dim, 4 * enc_out_dim, kernel_size, 1, 0)
        self.bn2 = nn.BatchNorm1d(4 * enc_out_dim, eps=1e-3, momentum=0.99)
        self.relu2 = nn.ReLU()

        self.project = nn.Linear(4 * enc_out_dim, llm_embed_dim)

    def forward(self, x, mask_pad):
        """
        x: B, T, enc_out_dim
        mask: (B, T) or (B, 1, T)
        """
        x = x.transpose(1, 2)  # B, channels, T

        # mask batch padding
        if mask_pad.size(2) > 0:  # time > 0
            x.masked_fill_(~mask_pad, 0.0)

        x = self.left_padding1(x)
        x = self.conv1d1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        x = self.left_padding2(x)
        x = self.conv1d2(x)
        x = self.bn2(x)
        x = self.relu2(x)

        x = x.transpose(1, 2)
        x = self.project(x)

        return x, mask_pad


class LinearAdapter(torch.nn.Module):
    def __init__(
        self,
        enc_out_dim: int = 512,
        llm_embed_dim: int = 4096,
    ):
        super().__init__()

        self.adpter = torch.nn.Linear(enc_out_dim, llm_embed_dim)

    def forward(self, x, mask_pad):
        return self.adpter(x), mask_pad


class CNNSubsampling(torch.nn.Module):
    def __init__(
        self,
        enc_out_dim: int = 512,
        llm_embed_dim: int = 4096,
        kernel_size: int = 5,
        activation_func: str = "relu",
        norm: str = "batch",
    ):
        super().__init__()

        #if enc_out_dim * 4 < llm_embed_dim:
        if enc_out_dim * 4 < 0:
            self.left_padding1 = nn.ConstantPad1d((kernel_size - 1, 0), 0.0)
            self.conv1d1 = nn.Conv1d(enc_out_dim, 2 * enc_out_dim, kernel_size, 1, 0)
            self.bn1 = nn.BatchNorm1d(2 * enc_out_dim, eps=1e-3, momentum=0.99)
            self.relu1 = nn.ReLU()

            self.left_padding2 = nn.ConstantPad1d((0, kernel_size - 1), 0.0)
            self.conv1d2 = nn.Conv1d(2 * enc_out_dim, 4 * enc_out_dim, kernel_size, 2, 0)
            self.bn2 = nn.BatchNorm1d(4 * enc_out_dim, eps=1e-3, momentum=0.99)
            self.relu2 = nn.ReLU()

            self.project = nn.Linear(4 * enc_out_dim, llm_embed_dim)
            self.cnn_num = 2
        else:
            self.left_padding2 = nn.ConstantPad1d((0, kernel_size - 1), 0.0)
            self.conv1d2 = nn.Conv1d(enc_out_dim, 2 * enc_out_dim, kernel_size, 2, 0)
            if norm == "batch":
                self.bn2 = nn.BatchNorm1d(2 * enc_out_dim, eps=1e-3, momentum=0.99)
            elif norm == "layer":
                self.bn2 = nn.LayerNorm(2 * enc_out_dim, eps=1e-3)
            if activation_func == "gelu":
                self.relu2 = nn.GELU()
            else:
                self.relu2 = nn.ReLU()

            self.project = nn.Linear(2 * enc_out_dim, llm_embed_dim)
            self.cnn_num = 1

    def forward(self, x, mask_pad):
        """
        x: B, T, enc_out_dim
        mask: (B, T) or (B, 1, T)
        """
        x = x.transpose(1, 2)  # B, channels, T

        # mask batch padding
        if mask_pad.size(2) > 0:  # time > 0
            x.masked_fill_(~mask_pad, 0.0)

        if self.cnn_num == 2:
            x = self.left_padding1(x)
            x = self.conv1d1(x)
            x = self.bn1(x)
            x = self.relu1(x)

        x = self.left_padding2(x)
        x = self.conv1d2(x)
        if isinstance(self.bn2, nn.LayerNorm):
            x = x.transpose(1, 2)
        x = self.bn2(x)
        if isinstance(self.bn2, nn.LayerNorm):
            x = x.transpose(1, 2)
        x = self.relu2(x)

        x = x.transpose(1, 2)
        x = self.project(x)

        return x, mask_pad[:, :, 0::2]