File size: 16,508 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
"""Encoder self-attention layer definition."""

import math
import pdb

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from vita.model.multimodal_encoder.whale.module.layer.attention import (
    Conv1dLinear,
    MultiHeadedAttention,
    MultiLayeredConv1d,
    PositionalEncoding,
    PositionwiseFeedForward,
    RelPositionalEncoding,
)

# from vita.model.multimodal_encoder.whale.module.component.utils import *
from vita.model.multimodal_encoder.whale.utils import IGNORE_ID, add_optional_chunk_mask, strtobool


def repeat(N, fn):
    """Repeat module N times.

    :param int N: repeat time
    :param function fn: function to generate module
    :return: repeated modules
    :rtype: MultiSequential
    """
    return MultiSequential(*[fn(n) for n in range(N)])


class MultiSequential(torch.nn.Sequential):
    """Multi-input multi-output torch.nn.Sequential."""

    def forward(self, x, masks, pos_emb):

        """Repeat."""
        for m in self:
            x, masks, pos_emb = m(x, masks, pos_emb)
        return x, masks, pos_emb

    @torch.jit.export
    def infer(self, x, pos_emb, buffer, buffer_index, buffer_out):
        # type: (Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]
        """Repeat."""
        for m in self:
            x, pos_emb, buffer, buffer_index, buffer_out = m.infer(
                x, pos_emb, buffer, buffer_index, buffer_out
            )
        return x, pos_emb, buffer, buffer_index, buffer_out

    @torch.jit.export
    def infer_hidden(self, x, pos_emb, buffer, buffer_index, buffer_out, hidden_out):
        # type: (Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]
        """Repeat."""
        for m in self:
            x, pos_emb, buffer, buffer_index, buffer_out = m.infer(
                x, pos_emb, buffer, buffer_index, buffer_out
            )
            hidden_out.append(x)
        return x, pos_emb, buffer, buffer_index, buffer_out, hidden_out


class TransformerLayer(nn.Module):
    """Transformer layer module.

    :param int size: input dim
    :param self_attn: self attention module
    :param feed_forward: feed forward module
    :param float dropout_rate: dropout rate
    :param bool normalize_before: whether to use layer_norm before the first block
    :param bool concat_after: whether to concat attention layer's input and output
        if True, additional linear will be applied. i.e. x -> x + linear(concat(x, att(x)))
        if False, no additional linear will be applied. i.e. x -> x + att(x)

    """

    def __init__(
        self, size, self_attn, feed_forward, dropout_rate, normalize_before=True, concat_after=False
    ):
        """Construct an TransformerLayer object."""
        super(TransformerLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.norm1 = torch.nn.LayerNorm(size)
        self.norm2 = torch.nn.LayerNorm(size)
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)
        else:
            self.concat_linear = nn.Identity()

    @torch.jit.unused
    def forward(self, x, mask, pos_emb):
        """Compute encoded features.

        :param torch.Tensor x: encoded source features (batch, max_time_in, size)
        :param torch.Tensor mask: mask for x (batch, max_time_in)
        :rtype: Tuple[torch.Tensor, torch.Tensor]
        """
        residual = x
        if self.normalize_before:
            x = self.norm1(x)
        if self.concat_after:
            x_concat = torch.cat((x, self.self_attn(x, x, x, mask, pos_emb)), dim=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(self.self_attn(x, x, x, mask, pos_emb))
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x
        if self.normalize_before:
            x = self.norm2(x)
        x = residual + self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm2(x)

        return x, mask, pos_emb

    @torch.jit.export
    def infer(self, x, pos_emb, buffer, buffer_index, buffer_out):
        # type: (Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]
        residual = x.clone()
        if self.normalize_before:
            x = self.norm1(x)
        if self.concat_after:
            x_att, buffer, buffer_index, buffer_out = self.self_attn.infer(
                x, x, x, pos_emb, buffer, buffer_index, buffer_out
            )
            x_concat = torch.cat((x, x_att), dim=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x_att, buffer, buffer_index, buffer_out = self.self_attn.infer(
                x, x, x, pos_emb, buffer, buffer_index, buffer_out
            )
            x = residual + x_att
        if not self.normalize_before:
            x = self.norm1(x)

        residual = x.clone()
        if self.normalize_before:
            x = self.norm2(x)
        x_feed, buffer, buffer_index, buffer_out = self.feed_forward.infer(
            x, buffer, buffer_index, buffer_out
        )
        x = residual + x_feed
        if not self.normalize_before:
            x = self.norm2(x)

        return x, pos_emb, buffer, buffer_index, buffer_out


class Transformer(torch.nn.Module):
    @staticmethod
    def add_arguments(group):
        """Add TDNN common arguments."""
        group.add_argument(
            "--transformer-input-dim", default=256, type=int, help="Input dim of Transformer."
        )
        group.add_argument(
            "--transformer-output-dim", default=4, type=int, help="Output dim of Transformer."
        )
        group.add_argument(
            "--transformer-attention-dim", default=256, type=int, help="Dimention of attention."
        )
        group.add_argument(
            "--transformer-attention-heads",
            default=4,
            type=int,
            help="The number of heads of multi head attention.",
        )
        group.add_argument(
            "--transformer-linear-units",
            default=1024,
            type=int,
            help="The number of units of position-wise feed forward.",
        )
        group.add_argument(
            "--transformer-num-blocks", default=6, type=int, help="The number of attention blocks."
        )
        group.add_argument(
            "--transformer-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate in Transformer.",
        )
        group.add_argument(
            "--transformer-attention-dropout-rate",
            default=0.0,
            type=float,
            help="Dropout rate in attention.",
        )
        group.add_argument(
            "--transformer-positional-dropout-rate",
            default=0.1,
            type=float,
            help="Dropout rate after adding positional encoding.",
        )
        group.add_argument(
            "--transformer-input-layer", default="linear", type=str, help="Type of input layer"
        )
        group.add_argument("--transformer-pos-enc-class", default="abs-enc", type=str, help="")
        group.add_argument(
            "--transformer-normalize-before",
            default=True,
            type=strtobool,
            help="Whether to use layer-norm before the first block.",
        )
        group.add_argument(
            "--transformer-concat-after",
            default=False,
            type=strtobool,
            help="Whether to concat attention layer's input and output.",
        )
        group.add_argument(
            "--transformer-positionwise-layer-type",
            default="linear",
            type=str,
            help="Linear of conv1d.",
        )
        group.add_argument(
            "--transformer-positionwise-conv-kernel_size",
            default=1,
            type=int,
            help="Kernel size of positionwise conv1d layer.",
        )
        group.add_argument("--transformer-chunk_size", default=-1, type=int, help="")
        group.add_argument("--transformer-left_chunks", default=-1, type=int, help="")
        group.add_argument("--transformer-dynamic-chunks", default=True, type=strtobool, help="")
        return group

    def __init__(
        self,
        args,
        input_dim=None,
        output_dim=None,
        attention_dim=None,
        attention_heads=None,
        linear_units=None,
        num_blocks=None,
        dropout_rate=None,
        positional_dropout_rate=None,
        attention_dropout_rate=None,
        input_layer=None,
        pos_enc_class=None,
        normalize_before=None,
        concat_after=None,
        positionwise_layer_type=None,
        positionwise_conv_kernel_size=None,
        chunk_size=None,
        left_chunks=None,
    ):
        """Construct an Encoder object."""
        super(Transformer, self).__init__()
        if args is None:
            self.input_dim = input_dim
            self.output_dim = output_dim
            self.attention_dim = attention_dim
            self.attention_heads = attention_heads
            self.linear_units = linear_units
            self.num_blocks = num_blocks
            self.dropout_rate = dropout_rate
            self.positional_dropout_rate = positional_dropout_rate
            self.attention_dropout_rate = attention_dropout_rate
            self.input_layer = input_layer
            self.pos_enc_class = pos_enc_class
            self.normalize_before = normalize_before
            self.concat_after = concat_after
            self.positionwise_layer_type = positionwise_layer_type
            self.positionwise_conv_kernel_size = positionwise_conv_kernel_size
            self.chunk_size = chunk_size
            self.left_chunks = left_chunks
        else:
            self.input_dim = args.transformer_input_dim
            self.output_dim = args.transformer_output_dim
            self.attention_dim = args.transformer_attention_dim
            self.attention_heads = args.transformer_attention_heads
            self.linear_units = args.transformer_linear_units
            self.num_blocks = args.transformer_num_blocks
            self.dropout_rate = args.transformer_dropout_rate
            self.positional_dropout_rate = args.transformer_positional_dropout_rate
            self.attention_dropout_rate = args.transformer_attention_dropout_rate
            self.input_layer = args.transformer_input_layer
            self.pos_enc_class = args.transformer_pos_enc_class
            self.normalize_before = args.transformer_normalize_before
            self.concat_after = args.transformer_concat_after
            self.positionwise_layer_type = args.transformer_positionwise_layer_type
            self.positionwise_conv_kernel_size = args.transformer_positionwise_conv_kernel_size
            self.chunk_size = args.transformer_chunk_size
            self.left_chunks = args.transformer_left_chunks
            self.transformer_dynamic_chunks = args.transformer_dynamic_chunks

        if self.pos_enc_class == "abs-enc":
            pos_enc_args = (self.attention_dim, self.positional_dropout_rate)
            pos_enc_class = PositionalEncoding
        elif self.pos_enc_class == "rel-enc":
            pos_enc_args = (
                self.attention_dim,
                self.positional_dropout_rate,
                self.chunk_size,
                self.left_chunks,
            )
            pos_enc_class = RelPositionalEncoding

        if self.input_layer == "linear":
            self.embed = torch.nn.Sequential(
                torch.nn.Linear(self.input_dim, self.attention_dim),
                torch.nn.LayerNorm(self.attention_dim),
                torch.nn.Dropout(self.dropout_rate),
                torch.nn.ReLU(),
            )
        elif self.input_layer == "embed":
            self.embed = torch.nn.Sequential(
                torch.nn.Embedding(self.input_dim, self.attention_dim, padding_idx=IGNORE_ID)
            )
        elif self.input_layer == "none":
            self.embed = torch.nn.Sequential(torch.nn.Identity())
        else:
            raise ValueError("unknown input_layer: " + self.input_layer)
        self.pe = pos_enc_class(*pos_enc_args)
        self.embed_layer_num = len(self.embed)

        if self.positionwise_layer_type == "linear":
            positionwise_layer = PositionwiseFeedForward
            positionwise_layer_args = (self.attention_dim, self.linear_units, self.dropout_rate)
        elif self.positionwise_layer_type == "conv1d":
            positionwise_layer = MultiLayeredConv1d
            positionwise_layer_args = (
                self.attention_dim,
                self.linear_units,
                self.positionwise_conv_kernel_size,
                self.dropout_rate,
            )
        elif self.positionwise_layer_type == "conv1d-linear":
            positionwise_layer = Conv1dLinear
            positionwise_layer_args = (
                self.attention_dim,
                self.linear_units,
                self.positionwise_conv_kernel_size,
                self.dropout_rate,
            )
        else:
            raise NotImplementedError("Support only linear or conv1d.")

        self.encoders = repeat(
            self.num_blocks,
            lambda lnum: TransformerLayer(
                self.attention_dim,
                MultiHeadedAttention(
                    self.attention_heads,
                    self.attention_dim,
                    self.attention_dropout_rate,
                    self.chunk_size,
                    self.left_chunks,
                    self.pos_enc_class,
                ),
                positionwise_layer(*positionwise_layer_args),
                self.dropout_rate,
                self.normalize_before,
                self.concat_after,
            ),
        )
        if self.normalize_before:
            self.after_norm = torch.nn.LayerNorm(self.attention_dim)

    @torch.jit.unused
    def forward(self, xs, ilens=None, masks=None):
        """Embed positions in tensor.

        :param torch.Tensor xs: input tensor
        :param torch.Tensor masks: input mask
        :return: position embedded tensor and mask
        :rtype Tuple[torch.Tensor, torch.Tensor]:
        """

        if self.transformer_dynamic_chunks == True:  # and self.training:
            chunk_masks = add_optional_chunk_mask(xs, masks, True, True, 0, 0, -1)
        else:
            chunk_masks = add_optional_chunk_mask(
                xs, masks, False, False, self.chunk_size, self.chunk_size, self.left_chunks
            ).to(xs.device)
        xs = self.embed(xs)
        xs, pos_emb = self.pe(xs)
        xs, chunk_masks, pos_emb = self.encoders(xs, chunk_masks, pos_emb)
        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, ilens, masks

    @torch.jit.export
    def infer(self, xs, buffer, buffer_index, buffer_out):
        xs = self.embed(xs)

        # pe_index = buffer[buffer_index: buffer_index + 1].reshape([1]).to(torch.int64)
        # xs, pos_emb, pe_index[0] = self.pe.infer(xs, pe_index[0])
        # buffer_out.append(pe_index.reshape(-1).to(torch.float32))
        # buffer_index = buffer_index + 1
        xs, pos_emb, _ = self.pe.infer(xs, 0)
        xs, pos_emb, buffer, buffer_index, buffer_out = self.encoders.infer(
            xs, pos_emb, buffer, buffer_index, buffer_out
        )

        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, buffer, buffer_index, buffer_out

    @torch.jit.export
    def infer_hidden(self, xs, buffer, buffer_index, buffer_out, hidden_out):
        xs = self.embed(xs)

        # pe_index = buffer[buffer_index: buffer_index + 1].reshape([1]).to(torch.int64)
        # xs, pos_emb, pe_index[0] = self.pe.infer(xs, pe_index[0])
        # buffer_out.append(pe_index.reshape(-1).to(torch.float32))
        # buffer_index = buffer_index + 1
        xs, pos_emb, _ = self.pe.infer(xs, 0)
        xs, pos_emb, buffer, buffer_index, buffer_out, hidden_out = self.encoders.infer_hidden(
            xs, pos_emb, buffer, buffer_index, buffer_out, hidden_out
        )

        if self.normalize_before:
            xs = self.after_norm(xs)
        return xs, buffer, buffer_index, buffer_out, hidden_out