Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,299 Bytes
bc752b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
import math
import pdb
import numpy
import torch
import torch.nn as nn
class PositionalEncoding(torch.nn.Module):
"""Positional encoding.
:param int d_model: embedding dim
:param float dropout_rate: dropout rate
:param int max_len: maximum input length
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel)))
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel)))
"""
def __init__(
self, d_model: int, dropout_rate: float, max_len: int = 1500, reverse: bool = False
):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = torch.nn.Dropout(p=dropout_rate)
self.max_len = max_len
self.pe = torch.zeros(self.max_len, self.d_model)
position = torch.arange(0, self.max_len, dtype=torch.float32).unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
self.pe[:, 0::2] = torch.sin(position * div_term)
self.pe[:, 1::2] = torch.cos(position * div_term)
self.pe = self.pe.unsqueeze(0)
def forward(self, x: torch.Tensor, offset: int = 0):
"""Add positional encoding.
Args:
x (torch.Tensor): Input. Its shape is (batch, time, ...)
offset (int): position offset
Returns:
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...)
torch.Tensor: for compatibility to RelPositionalEncoding
"""
assert offset + x.size(1) < self.max_len
self.pe = self.pe.to(x.device)
pos_emb = self.pe[:, offset : offset + x.size(1)]
x = x * self.xscale + pos_emb
return self.dropout(x), self.dropout(pos_emb)
def position_encoding(self, offset: int, size: int):
"""For getting encoding in a streaming fashion
Attention!!!!!
we apply dropout only once at the whole utterance level in a none
streaming way, but will call this function several times with
increasing input size in a streaming scenario, so the dropout will
be applied several times.
Args:
offset (int): start offset
size (int): requried size of position encoding
Returns:
torch.Tensor: Corresponding encoding
"""
assert offset + size < self.max_len
return self.dropout(self.pe[:, offset : offset + size])
class RelPositionalEncoding(PositionalEncoding):
"""Relative positional encoding module.
See : Appendix B in https://arxiv.org/abs/1901.02860
Args:
d_model (int): Embedding dimension.
dropout_rate (float): Dropout rate.
max_len (int): Maximum input length.
"""
def __init__(
self,
d_model: int,
dropout_rate: float,
chunk_size: int,
left_chunks: int,
max_len: int = 5000,
):
"""Initialize class."""
super().__init__(d_model, dropout_rate, max_len, reverse=True)
self.chunk_size = chunk_size
self.left_chunks = left_chunks
self.full_chunk_size = (self.left_chunks + 1) * self.chunk_size
self.div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.float32)
* -(math.log(10000.0) / self.d_model)
)
self.max_len = self.chunk_size * (max_len // self.chunk_size) - self.full_chunk_size
@torch.jit.export
def forward(self, x: torch.Tensor, offset: int = 0):
"""Compute positional encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, `*`).
Returns:
torch.Tensor: Encoded tensor (batch, time, `*`).
torch.Tensor: Positional embedding tensor (1, time, `*`).
"""
self.pe = self.pe.to(x.device)
x = x * self.xscale
pos_emb = self.pe[:, offset : offset + x.size(1)]
return self.dropout(x), self.dropout(pos_emb)
@torch.jit.export
def infer(self, xs, pe_index):
# type: (Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor]
pe_index = pe_index % self.max_len
xs = xs * self.xscale
pe = torch.zeros(self.full_chunk_size, self.d_model)
position = torch.arange(
pe_index, pe_index + self.full_chunk_size, dtype=torch.float32
).unsqueeze(1)
pe[:, 0::2] = torch.sin(position * self.div_term)
pe[:, 1::2] = torch.cos(position * self.div_term)
pos_emb = pe.unsqueeze(0)
pe_index = pe_index + self.chunk_size
return xs, pos_emb, pe_index
class PositionwiseFeedForward(torch.nn.Module):
"""Positionwise feed forward layer.
:param int idim: input dimenstion
:param int hidden_units: number of hidden units
:param float dropout_rate: dropout rate
"""
def __init__(self, idim, hidden_units, dropout_rate):
"""Construct an PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__()
self.w_1 = torch.nn.Linear(idim, hidden_units)
self.w_2 = torch.nn.Linear(hidden_units, idim)
self.dropout = torch.nn.Dropout(dropout_rate)
def forward(self, x):
"""Forward funciton."""
return self.w_2(self.dropout(torch.relu(self.w_1(x))))
@torch.jit.export
def infer(self, xs, buffer, buffer_index, buffer_out):
# type: (Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor]
return self.w_2(torch.relu(self.w_1(xs))), buffer, buffer_index, buffer_out
class MultiLayeredConv1d(torch.nn.Module):
"""Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed
to replace positionwise feed-forward network
in Transformer block, which is introduced in
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
"""Initialize MultiLayeredConv1d module.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
"""
super(MultiLayeredConv1d, self).__init__()
self.w_1 = torch.nn.Conv1d(
in_chans,
hidden_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.w_2 = torch.nn.Conv1d(
hidden_chans,
in_chans,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
)
self.dropout = torch.nn.Dropout(dropout_rate)
@torch.jit.unused
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, ..., in_chans).
Returns:
Tensor: Batch of output tensors (B, ..., hidden_chans).
"""
x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)
class Conv1dLinear(torch.nn.Module):
"""Conv1D + Linear for Transformer block.
A variant of MultiLayeredConv1d, which replaces second conv-layer to linear.
"""
def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
"""Initialize Conv1dLinear module.
Args:
in_chans (int): Number of input channels.
hidden_chans (int): Number of hidden channels.
kernel_size (int): Kernel size of conv1d.
dropout_rate (float): Dropout rate.
"""
super(Conv1dLinear, self).__init__()
self.lorder = kernel_size - 1
self.left_padding = nn.ConstantPad1d((self.lorder, 0), 0.0)
self.w_1 = torch.nn.Sequential(
torch.nn.Conv1d(in_chans, in_chans, kernel_size, stride=1, padding=0, groups=in_chans),
torch.nn.Conv1d(in_chans, hidden_chans, 1, padding=0),
)
self.w_2 = torch.nn.Linear(hidden_chans, in_chans)
self.dropout = torch.nn.Dropout(dropout_rate)
self.in_chans = in_chans
# cnn_buffer = 1, in_chans, self.lorder
self.buffer_size = 1 * self.in_chans * self.lorder
@torch.jit.unused
def forward(self, x):
"""Calculate forward propagation.
Args:
x (Tensor): Batch of input tensors (B, ..., in_chans).
Returns:
Tensor: Batch of output tensors (B, ..., hidden_chans).
"""
x = torch.relu(self.w_1(self.left_padding(x.transpose(-1, 1)))).transpose(-1, 1)
return self.w_2(self.dropout(x))
@torch.jit.export
def infer(self, x, buffer, buffer_index, buffer_out):
# type: (Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor]
x = x.transpose(-1, 1)
cnn_buffer = buffer[buffer_index : buffer_index + self.buffer_size].reshape(
[1, self.in_chans, self.lorder]
)
x = torch.cat([cnn_buffer, x], dim=2)
buffer_out.append(x[:, :, -self.lorder :].reshape(-1))
buffer_index = buffer_index + self.buffer_size
x = self.w_1(x)
x = torch.relu(x).transpose(-1, 1)
x = self.w_2(x)
return x, buffer, buffer_index, buffer_out
class MultiHeadedAttention(nn.Module):
"""Multi-Head Attention layer.
:param int n_head: the number of head s
:param int n_feat: the number of features
:param float dropout_rate: dropout rate
"""
def __init__(self, n_head, n_feat, dropout_rate, chunk_size, left_chunks, pos_enc_class):
"""Construct an MultiHeadedAttention object."""
super(MultiHeadedAttention, self).__init__()
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(n_feat, n_feat)
self.linear_k = nn.Linear(n_feat, n_feat)
self.linear_v = nn.Linear(n_feat, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.dropout = nn.Dropout(p=dropout_rate)
# self.min_value = float(numpy.finfo(torch.tensor(0, dtype=torch.float16).numpy().dtype).min)
self.min_value = float(torch.finfo(torch.float16).min)
# chunk par
if chunk_size > 0 and left_chunks > 0: # for streaming mode
self.buffersize = chunk_size * (left_chunks)
self.left_chunk_size = chunk_size * left_chunks
else: # for non-streaming mode
self.buffersize = 1
self.left_chunk_size = 1
self.chunk_size = chunk_size
# encoding setup
if pos_enc_class == "rel-enc":
self.rel_enc = True
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k))
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k))
torch.nn.init.xavier_uniform_(self.pos_bias_u)
torch.nn.init.xavier_uniform_(self.pos_bias_v)
else:
self.rel_enc = False
self.linear_pos = nn.Identity()
self.pos_bias_u = torch.tensor([0])
self.pos_bias_v = torch.tensor([0])
# buffer
# key_buffer = 1, self.h, self.buffersize, self.d_k
self.key_buffer_size = 1 * self.h * self.buffersize * self.d_k
# value_buffer = 1, self.h, self.buffersize, self.d_k
self.value_buffer_size = 1 * self.h * self.buffersize * self.d_k
if self.chunk_size > 0:
# buffer_mask_size = 1, self.h, self.chunk_size, self.buffersize
self.buffer_mask_size = 1 * self.h * self.chunk_size * self.buffersize
# self.buffer_mask = torch.ones([1, self.h, self.chunk_size, self.buffersize], dtype=torch.bool)
else:
self.buffer_mask = torch.ones([1, self.h, 1, 1], dtype=torch.bool)
@torch.jit.unused
def rel_shift(self, x, zero_triu: bool = False):
"""Compute relative positinal encoding.
Args:
x (torch.Tensor): Input tensor (batch, time, size).
zero_triu (bool): If true, return the lower triangular part of
the matrix.
Returns:
torch.Tensor: Output tensor.
"""
zero_pad = torch.zeros(
(x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype
)
x_padded = torch.cat([zero_pad, x], dim=-1)
x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x.size(2))
x = x_padded[:, :, 1:].view_as(x)
if zero_triu:
ones = torch.ones((x.size(2), x.size(3)))
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :]
return x
@torch.jit.export
def forward(self, query, key, value, mask=None, pos_emb=torch.tensor(1.0)):
# type: (Tensor, Tensor, Tensor, Optional[Tensor], Tensor) -> Tensor
"""Compute 'Scaled Dot Product Attention'.
:param torch.Tensor query: (batch, time1, size)
:param torch.Tensor key: (batch, time2, size)
:param torch.Tensor value: (batch, time2, size)
:param torch.Tensor mask: (batch, time1, time2)
:param torch.nn.Dropout dropout:
:return torch.Tensor: attentined and transformed `value` (batch, time1, d_model)
weighted by the query dot key attention (batch, head, time1, time2)
"""
n_batch = query.size(0)
q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k)
k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k)
v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k)
q = q.transpose(1, 2) # (batch, head, time1, d_k)
k = k.transpose(1, 2) # (batch, head, time2, d_k)
v = v.transpose(1, 2) # (batch, head, time2, d_k)
if self.rel_enc:
q = q.transpose(1, 2) # (batch, time1, head, d_k)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb.to(query.dtype)).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
else:
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(
self.d_k
) # (batch, head, time1, time2)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2)
scores = scores.masked_fill(mask, self.min_value)
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
p_attn = self.dropout(attn)
x = torch.matmul(p_attn, v) # (batch, head, time1, d_k)
x = (
x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k)
) # (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model)
@torch.jit.export
def infer(self, query, key, value, pos_emb, buffer, buffer_index, buffer_out):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor]
n_batch = query.size(0)
q = (
self.linear_q(query).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_q, d_k)
k = (
self.linear_k(key).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_k, d_k)
v = (
self.linear_v(value).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_v, d_k)
key_value_buffer = buffer[
buffer_index : buffer_index + self.key_buffer_size + self.value_buffer_size
].reshape([1, self.h, self.buffersize * 2, self.d_k])
key_buffer = torch.cat([key_value_buffer[:, :, : self.buffersize, :], k], dim=2)
value_buffer = torch.cat([key_value_buffer[:, :, self.buffersize :, :], v], dim=2)
buffer_out.append(
torch.cat(
[key_buffer[:, :, self.chunk_size :, :], value_buffer[:, :, self.chunk_size :, :]],
dim=2,
).reshape(-1)
)
buffer_index = buffer_index + self.key_buffer_size + self.value_buffer_size
if self.rel_enc:
q = q.transpose(1, 2) # (batch, time1, head, d_k)
n_batch_pos = pos_emb.size(0)
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k)
p = p.transpose(1, 2) # (batch, head, time1, d_k)
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2)
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2)
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = torch.matmul(q_with_bias_u, key_buffer.transpose(-2, -1))
# compute matrix b and matrix d
# (batch, head, time1, time2)
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1))
# Remove rel_shift since it is useless in speech recognition,
# and it requires special attention for streaming.
# matrix_bd = self.rel_shift(matrix_bd)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k) # (batch, head, time1, time2)
else:
scores = torch.matmul(q, key_buffer.transpose(-2, -1)) / math.sqrt(
self.d_k
) # (batch, head, len_q, buffersize)
attn = torch.softmax(scores, dim=-1)
x = torch.matmul(attn, value_buffer) # (batch, head, len_q, d_k)
x = x.transpose(1, 2).reshape(n_batch, -1, self.h * self.d_k) # (batch, time1, d_model)
return self.linear_out(x), buffer, buffer_index, buffer_out # (batch, time1, d_model)
@torch.jit.export
def infer_mask(self, query, key, value, mask, buffer, buffer_index, buffer_out, is_static):
n_batch = query.size(0)
q = (
self.linear_q(query).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_q, d_k)
k = (
self.linear_k(key).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_k, d_k)
v = (
self.linear_v(value).view(n_batch, -1, self.h, self.d_k).transpose(1, 2)
) # (batch, head, len_v, d_k)
if is_static:
key_buffer = k
value_buffer = v
else:
key_value_buffer = buffer[
buffer_index : buffer_index + self.key_buffer_size + self.value_buffer_size
].reshape([1, self.h, self.buffersize * 2, self.d_k])
key_buffer = torch.cat([key_value_buffer[:, :, : self.buffersize, :], k], dim=2)
value_buffer = torch.cat([key_value_buffer[:, :, self.buffersize :, :], v], dim=2)
buffer_out.append(
torch.cat(
[
key_buffer[:, :, self.chunk_size :, :],
value_buffer[:, :, self.chunk_size :, :],
],
dim=2,
).reshape(-1)
)
buffer_index = buffer_index + self.key_buffer_size + self.value_buffer_size
scores = torch.matmul(q, key_buffer.transpose(-2, -1)) / math.sqrt(
self.d_k
) # (batch, head, len_q, buffersize)
if mask is not None:
mask = mask.unsqueeze(1).eq(0) # (batch, 1, time1, time2)
scores = scores.masked_fill(mask, self.min_value)
attn = torch.softmax(scores, dim=-1).masked_fill(
mask, 0.0
) # (batch, head, time1, time2)
else:
attn = torch.softmax(scores, dim=-1) # (batch, head, time1, time2)
x = torch.matmul(attn, value_buffer) # (batch, head, len_q, d_k)
x = x.transpose(1, 2).reshape(n_batch, -1, self.h * self.d_k) # (batch, time1, d_model)
return self.linear_out(x), buffer_index, buffer_out # (batch, time1, d_model)
class SoftAttention(nn.Module):
def __init__(self, in_dim, hidden_dim):
super(SoftAttention, self).__init__()
self.q = torch.nn.Parameter(torch.rand([hidden_dim]), requires_grad=True)
self.wb = nn.Linear(in_dim, hidden_dim)
self.min_value = float(numpy.finfo(torch.tensor(0, dtype=torch.float32).numpy().dtype).min)
# buffer
self.window_size = 50
self.buffer_in = torch.zeros([1, self.window_size, in_dim], dtype=torch.float32)
self.buffer = torch.zeros([1, self.window_size], dtype=torch.float32)
self.buffer[:, :] = float(
numpy.finfo(torch.tensor(0, dtype=torch.float32).numpy().dtype).min
)
@torch.jit.unused
def forward(self, x, mask=None):
hidden = torch.tanh(self.wb(x)) # B T D
hidden = torch.einsum("btd,d->bt", hidden, self.q)
score = torch.softmax(hidden, dim=-1) # B T
if mask is not None:
score = score.masked_fill(mask, 0.0)
output = torch.einsum("bt,btd->bd", score, x)
return output
@torch.jit.export
def infer(self, x):
# type: (Tensor) -> Tensor
hidden = torch.tanh(self.wb(x)) # B T D
hidden = torch.einsum("btd,d->bt", hidden, self.q)
size = hidden.shape[1]
output = torch.zeros([size, x.shape[-1]])
for i in range(size):
self.buffer = torch.cat([self.buffer, hidden[:, i : i + 1]], dim=-1)
self.buffer = self.buffer[:, 1:]
score = torch.softmax(self.buffer, dim=-1) # B T
self.buffer_in = torch.cat([self.buffer_in, x[:, i : i + 1, :]], dim=1)
self.buffer_in = self.buffer_in[:, 1:]
output[i : i + 1] = torch.einsum("bt,btd->bd", score, self.buffer_in)
return output
|