Spaces:
Running
on
Zero
Running
on
Zero
import argparse | |
import logging | |
import sys | |
import time | |
from typing import Dict, Optional, Tuple | |
import numpy as np | |
import six | |
import torch | |
from vita.model.multimodal_encoder.whale.module.component.mamba import MambaSSM | |
from vita.model.multimodal_encoder.whale.module.component.subsampling import Subsampling | |
from vita.model.multimodal_encoder.whale.module.component.transformer import Transformer | |
from vita.model.multimodal_encoder.whale.utils import make_pad_mask | |
def add_encoder_args(group): | |
"""Add Encoder common arguments.""" | |
group.add_argument( | |
"--encoder-layer-config", | |
type=str, | |
default="tdnn-dtc", | |
help="Layer config of encoder. Format layername-layername-..., default(conv1d-fsmn-rnn)", | |
) | |
group.add_argument( | |
"--encoder-input-dim", | |
type=int, | |
default=256, | |
help="Input dim of encoder. Must equal to the input dim of the first Component (default=40)", | |
) | |
group.add_argument( | |
"--encoder-output-dim", | |
type=int, | |
default=256, | |
help="Output dim of encoder. Must enqual to the output dim of the last Component ! (default=256)", | |
) | |
# Add args of all kinds of components. | |
# If you add a new component, DO NOT forget to add args to add_component_args func. | |
group = Transformer.add_arguments(group) | |
group = Subsampling.add_arguments(group) | |
group = MambaSSM.add_arguments(group) | |
return group | |
def assign_args_from_dict(args, dict, prefix_key=None): | |
if prefix_key is not None: | |
dict = dict[prefix_key] | |
for k, v in dict.items(): | |
k_args = k.replace("-", "_") | |
if hasattr(args, k_args): | |
setattr(args, k_args, dict[k]) | |
return args | |
class whaleEncoder(torch.nn.Module): | |
def __init__(self, input_dim, overview_conf=None, para_conf=None, global_cmvn=None): | |
super(whaleEncoder, self).__init__() | |
parser = argparse.ArgumentParser() | |
add_encoder_args(parser) | |
args, _ = parser.parse_known_args() | |
assign_args_from_dict(args, overview_conf) | |
# assign_args_from_dict(args, para_conf) | |
self.config = args.encoder_layer_config.split("-") | |
encoder_input_dim = args.encoder_input_dim | |
encoder_output_dim = args.encoder_output_dim | |
prev_output_dim = encoder_input_dim | |
prev_component_name = "encoder" | |
self.enc = torch.nn.ModuleList([]) | |
for name in self.config: | |
assign_args_from_dict(args, para_conf[name]) | |
if len(name.split("_")) == 2: | |
name = name.split("_")[0] | |
elif len(name.split("_")) == 1: | |
name = name | |
else: | |
logging.error("WRONG CONFIG! {} is not valid".format("encoder", name)) | |
sys.exit() | |
if name == "transformer": | |
self.enc.append(Transformer(args)) | |
elif name == "subsampling": | |
self.enc.append(Subsampling(args)) | |
elif name == "mamba": | |
self.enc.append(MambaSSM(args)) | |
else: | |
print("{} is not supported now!".format(name)) | |
return NotImplemented | |
component_input_dim = getattr(args, name + "_input_dim") | |
if component_input_dim != prev_output_dim: | |
# This is the first layer | |
logging.error( | |
"WRONG CONFIG! --{}-output-dim ({}) does not equal to --{}-input-dim ({})".format( | |
prev_component_name, prev_output_dim, name, component_input_dim | |
) | |
) | |
sys.exit() | |
prev_output_dim = getattr(args, name + "_output_dim") | |
prev_component_name = name | |
self.global_cmvn = global_cmvn | |
if prev_output_dim != encoder_output_dim: | |
logging.error( | |
"WRONG CONFIG! --{}-output-dim ({}) does not equal to --{}-output-dim ({}, the last component)".format( | |
"encoder", encoder_output_dim, name, prev_output_dim | |
) | |
) | |
sys.exit() | |
self._output_size = encoder_output_dim | |
num_params = sum(p.numel() for p in self.parameters()) | |
print("the number of whale encoder params: {}M".format(num_params / 1024 / 1024)) | |
def output_size(self) -> int: | |
return self._output_size | |
def forward(self, xs, ilens, decoding_chunk_size=None, num_decoding_left_chunks=None): | |
# type: (Tensor, Optional[Tensor], Optional[Tensor]) -> Tuple[Tensor, Optional[List[int]], Optional[Tensor]] | |
"""Encoder forward | |
:param torch.Tensor xs_pad: batch of padded input sequences (B, Tmax, D) | |
:param torch.Tensor ilens: batch of lengths of input sequences (B) | |
:return: batch of hidden state sequences (B, Tmax, eprojs) | |
:rtype: torch.Tensor | |
""" | |
if decoding_chunk_size is not None and num_decoding_left_chunks is not None: | |
for layer in self.enc: | |
if hasattr(layer, "chunk_size"): | |
layer.chunk_size = decoding_chunk_size | |
if hasattr(layer, "left_chunks"): | |
layer.left_chunks = num_decoding_left_chunks | |
if hasattr(layer, "transformer_dynamic_chunks"): | |
layer.transformer_dynamic_chunks = False | |
assert (len(xs.shape)) == 3 | |
T = xs.size(1) | |
masks = ~make_pad_mask(ilens, T).unsqueeze(1) # (B, 1, T) | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
for module in self.enc: | |
xs, ilens, masks = module(xs, ilens, masks) | |
return xs, masks | |
def infer(self, xs_pad, buffer, buffer_index, buffer_out): | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
for module in self.enc: | |
xs_pad, buffer, buffer_index, buffer_out = module.infer( | |
xs_pad, buffer, buffer_index, buffer_out | |
) | |
return xs_pad, buffer, buffer_index, buffer_out | |
def infer_hidden(self, xs_pad, buffer, buffer_index, buffer_out, hidden_out): | |
if self.global_cmvn is not None: | |
xs = self.global_cmvn(xs) | |
for module in self.enc: | |
xs_pad, buffer, buffer_index, buffer_out, hidden_out = module.infer_hidden( | |
xs_pad, buffer, buffer_index, buffer_out, hidden_out | |
) | |
return xs_pad, buffer, buffer_index, buffer_out, hidden_out | |
def get_extra_loss(self) -> Dict[str, torch.Tensor]: | |
return None | |