Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,283 +1,122 @@
|
|
1 |
import streamlit as st
|
2 |
import folium
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
-
from typing import List, Tuple, Dict, Optional
|
5 |
-
import time
|
6 |
-
from collections import deque
|
7 |
-
import requests
|
8 |
import polyline
|
9 |
-
|
10 |
|
11 |
-
#
|
12 |
-
def
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
f'display: flex; align-items: center; justify-content: center; border: 2px solid blue; '
|
17 |
-
f'font-weight: bold;">{number}</div>'
|
18 |
-
)
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
geolocator = Nominatim(user_agent="travel_optimizer")
|
24 |
-
location = geolocator.geocode(place_name)
|
25 |
-
if location:
|
26 |
-
return (location.latitude, location.longitude)
|
27 |
-
except Exception as e:
|
28 |
-
st.error(f"Error geocoding {place_name}: {str(e)}")
|
29 |
-
return None
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
if
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Add rate limiting
|
59 |
-
time.sleep(1) # Respect OSRM usage guidelines
|
60 |
-
|
61 |
-
try:
|
62 |
-
response = requests.get(url, params=params)
|
63 |
-
if response.status_code == 200:
|
64 |
-
data = response.json()
|
65 |
-
if data["code"] == "Ok" and len(data["routes"]) > 0:
|
66 |
-
route = data["routes"][0]
|
67 |
-
return {
|
68 |
-
'distance': route['distance'] / 1000, # Convert to km
|
69 |
-
'duration': route['duration'] / 60, # Convert to minutes
|
70 |
-
'geometry': route['geometry'],
|
71 |
-
'steps': route['legs'][0]['steps']
|
72 |
-
}
|
73 |
-
except Exception as e:
|
74 |
-
st.warning(f"Error getting route: {str(e)}")
|
75 |
-
return None
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
for j in range(n):
|
89 |
-
if i != j:
|
90 |
-
origin = places[i][1]
|
91 |
-
destination = places[j][1]
|
92 |
-
|
93 |
-
route_data = get_route_from_osrm(origin, destination)
|
94 |
-
|
95 |
-
if route_data:
|
96 |
-
distances[i,j] = route_data['distance']
|
97 |
-
routing_info[(i,j)] = {
|
98 |
-
'distance_km': f"{route_data['distance']:.1f} km",
|
99 |
-
'duration_mins': f"{route_data['duration']:.0f} mins",
|
100 |
-
'geometry': route_data['geometry'],
|
101 |
-
'steps': route_data['steps']
|
102 |
-
}
|
103 |
-
|
104 |
-
current_calc += 1
|
105 |
-
progress_bar.progress(current_calc / total_calcs)
|
106 |
-
|
107 |
-
return distances, routing_info
|
108 |
|
109 |
-
|
110 |
-
|
111 |
-
n = len(distances)
|
112 |
-
visited = [False] * n
|
113 |
-
distances_to = [float('inf')] * n
|
114 |
-
prev_node = [-1] * n
|
115 |
-
|
116 |
-
distances_to[start_idx] = 0
|
117 |
-
queue = deque([start_idx])
|
118 |
-
|
119 |
-
while queue:
|
120 |
-
current_node = queue.popleft()
|
121 |
-
visited[current_node] = True
|
122 |
-
|
123 |
-
for neighbor in range(n):
|
124 |
-
if not visited[neighbor] and distances[current_node, neighbor] > 0:
|
125 |
-
new_distance = distances_to[current_node] + distances[current_node, neighbor]
|
126 |
-
if new_distance < distances_to[neighbor]:
|
127 |
-
distances_to[neighbor] = new_distance
|
128 |
-
prev_node[neighbor] = current_node
|
129 |
-
queue.append(neighbor)
|
130 |
-
|
131 |
-
# Reconstruct the optimal route
|
132 |
-
optimal_order = []
|
133 |
-
for i in range(n):
|
134 |
-
node = i
|
135 |
-
while prev_node[node] != -1:
|
136 |
-
optimal_order.insert(0, node)
|
137 |
-
node = prev_node[node]
|
138 |
-
if len(optimal_order) > 0 and optimal_order[0] == i:
|
139 |
-
optimal_order.insert(0, start_idx)
|
140 |
-
break
|
141 |
-
|
142 |
-
return optimal_order, distances_to
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
current_place, (lat, lon) = places[current_idx]
|
154 |
-
segment_info = routing_info.get((current_idx, next_idx), {})
|
155 |
-
|
156 |
-
# Add marker
|
157 |
-
popup_content = f"""
|
158 |
-
<b>Stop {i+1}: {current_place}</b><br>
|
159 |
-
"""
|
160 |
-
if i < len(optimal_order) - 1:
|
161 |
-
popup_content += f"""
|
162 |
-
To next stop:<br>
|
163 |
-
Distance: {segment_info.get('distance_km', 'N/A')}<br>
|
164 |
-
Duration: {segment_info.get('duration_mins', 'N/A')}
|
165 |
-
"""
|
166 |
-
|
167 |
-
folium.Marker(
|
168 |
-
[lat, lon],
|
169 |
-
popup=folium.Popup(popup_content, max_width=300),
|
170 |
-
icon=create_numbered_marker(i+1)
|
171 |
-
).add_to(m)
|
172 |
-
|
173 |
-
# Draw route line
|
174 |
-
if i < len(optimal_order) - 1:
|
175 |
-
if 'geometry' in segment_info:
|
176 |
-
try:
|
177 |
-
route_coords = polyline.decode(segment_info['geometry'])
|
178 |
-
folium.PolyLine(
|
179 |
-
route_coords,
|
180 |
-
weight=2,
|
181 |
-
color='blue',
|
182 |
-
opacity=0.8
|
183 |
-
).add_to(m)
|
184 |
-
except Exception as e:
|
185 |
-
st.warning(f"Error drawing route: {str(e)}")
|
186 |
-
next_place = places[next_idx][1]
|
187 |
-
folium.PolyLine(
|
188 |
-
[[lat, lon], [next_place[0], next_place[1]]],
|
189 |
-
weight=2,
|
190 |
-
color='red',
|
191 |
-
opacity=0.8
|
192 |
-
).add_to(m)
|
193 |
-
|
194 |
-
# Add to totals
|
195 |
-
if 'distance_km' in segment_info:
|
196 |
-
total_distance += float(segment_info['distance_km'].split()[0])
|
197 |
-
if 'duration_mins' in segment_info:
|
198 |
-
total_duration += float(segment_info['duration_mins'].split()[0])
|
199 |
-
|
200 |
-
return total_distance, total_duration
|
201 |
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
st.markdown("### 🗺️ Route Details")
|
213 |
-
for i in range(len(optimal_order)):
|
214 |
-
current_idx = optimal_order[i]
|
215 |
-
next_idx = optimal_order[(i + 1) % len(optimal_order)]
|
216 |
-
|
217 |
-
current_place = places[current_idx][0]
|
218 |
-
segment_info = routing_info.get((current_idx, next_idx), {})
|
219 |
-
|
220 |
-
st.markdown(f"**Stop {i+1}: {current_place}**")
|
221 |
-
|
222 |
-
if i < len(optimal_order) - 1:
|
223 |
-
st.markdown(f"↓ *{segment_info.get('distance_km', 'N/A')}, "
|
224 |
-
f"Duration: {segment_info.get('duration_mins', 'N/A')}*")
|
225 |
-
|
226 |
-
if 'steps' in segment_info:
|
227 |
-
with st.expander("📍 Turn-by-turn directions"):
|
228 |
-
instructions = format_instructions(segment_info['steps'])
|
229 |
-
for idx, instruction in enumerate(instructions, 1):
|
230 |
-
st.write(f"{idx}. {instruction}")
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
|
|
239 |
|
240 |
-
#
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
places = []
|
245 |
-
for i in range(num_places):
|
246 |
-
place = st.text_input(f"Destination {i+1}")
|
247 |
-
if place:
|
248 |
-
with st.spinner(f"Finding coordinates for {place}..."):
|
249 |
-
coordinates = get_place_coordinates(place)
|
250 |
-
if coordinates:
|
251 |
-
places.append((place, coordinates))
|
252 |
-
st.success(f"✓ Found coordinates for {place}")
|
253 |
-
else:
|
254 |
-
st.error(f"❌ Couldn't find coordinates for {place}")
|
255 |
|
256 |
-
|
257 |
-
|
258 |
-
col1, col2 = st.columns([2, 1])
|
259 |
-
with col1:
|
260 |
-
with st.spinner("🚗 Calculating optimal route..."):
|
261 |
-
# Calculate distance matrix
|
262 |
-
distances, routing_info = calculate_distance_matrix(places)
|
263 |
-
|
264 |
-
# Get optimized route order using Dijkstra's algorithm
|
265 |
-
optimal_order, _ = dijkstra(distances, 0)
|
266 |
-
|
267 |
-
# Update the route if the user changes the input
|
268 |
-
if st.button("Recalculate Route"):
|
269 |
-
distances, routing_info = calculate_distance_matrix(places)
|
270 |
-
optimal_order, _ = dijkstra(distances, 0)
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
st.components.v1.html(m._repr_html_(), height=600)
|
276 |
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
279 |
else:
|
280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
281 |
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import folium
|
3 |
+
from geopy.geocoders import Nominatim
|
4 |
+
from geopy.distance import geodesic
|
5 |
+
from itertools import combinations
|
6 |
import numpy as np
|
|
|
|
|
|
|
|
|
7 |
import polyline
|
8 |
+
import requests
|
9 |
|
10 |
+
# Algoritma Held-Karp untuk TSP
|
11 |
+
def held_karp_tsp(dist_matrix):
|
12 |
+
n = len(dist_matrix)
|
13 |
+
inf = float('inf')
|
14 |
+
memo = {}
|
|
|
|
|
|
|
15 |
|
16 |
+
# Initialize memo table for subsets of size 2
|
17 |
+
for i in range(1, n):
|
18 |
+
memo[(1 << i, i)] = dist_matrix[0][i]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Fill memo table for larger subsets
|
21 |
+
for subset_size in range(2, n):
|
22 |
+
for subset in combinations(range(1, n), subset_size):
|
23 |
+
bits = 0
|
24 |
+
for bit in subset:
|
25 |
+
bits |= 1 << bit
|
26 |
+
for next_city in subset:
|
27 |
+
prev_bits = bits & ~(1 << next_city)
|
28 |
+
min_dist = inf
|
29 |
+
for k in subset:
|
30 |
+
if k == next_city:
|
31 |
+
continue
|
32 |
+
current_dist = memo[(prev_bits, k)] + dist_matrix[k][next_city]
|
33 |
+
if current_dist < min_dist:
|
34 |
+
min_dist = current_dist
|
35 |
+
memo[(bits, next_city)] = min_dist
|
36 |
|
37 |
+
# Find optimal tour
|
38 |
+
bits = (2 ** n - 1) - 1
|
39 |
+
min_tour_cost = inf
|
40 |
+
last_city = None
|
41 |
+
for k in range(1, n):
|
42 |
+
tour_cost = memo[(bits, k)] + dist_matrix[k][0]
|
43 |
+
if tour_cost < min_tour_cost:
|
44 |
+
min_tour_cost = tour_cost
|
45 |
+
last_city = k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
# Backtrack to find the full tour
|
48 |
+
tour = [0]
|
49 |
+
bits = (2 ** n - 1) - 1
|
50 |
+
for _ in range(n - 1):
|
51 |
+
tour.append(last_city)
|
52 |
+
bits &= ~(1 << last_city)
|
53 |
+
next_city = min(
|
54 |
+
[(memo[(bits, k)] + dist_matrix[k][last_city], k) for k in range(n) if (bits, k) in memo],
|
55 |
+
key=lambda x: x[0],
|
56 |
+
)[1]
|
57 |
+
last_city = next_city
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
tour.append(0)
|
60 |
+
return min_tour_cost, tour
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
# Mendapatkan koordinat kota dari nama
|
63 |
+
def get_coordinates(city_name):
|
64 |
+
geolocator = Nominatim(user_agent="tsp_app")
|
65 |
+
location = geolocator.geocode(city_name)
|
66 |
+
if location:
|
67 |
+
return (location.latitude, location.longitude)
|
68 |
+
else:
|
69 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Menghitung jarak antar semua pasangan kota
|
72 |
+
def create_distance_matrix(coordinates):
|
73 |
+
n = len(coordinates)
|
74 |
+
dist_matrix = np.zeros((n, n))
|
75 |
+
for i in range(n):
|
76 |
+
for j in range(i + 1, n):
|
77 |
+
dist_matrix[i][j] = geodesic(coordinates[i], coordinates[j]).kilometers
|
78 |
+
dist_matrix[j][i] = dist_matrix[i][j]
|
79 |
+
return dist_matrix
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
# Fungsi untuk menampilkan peta rute
|
82 |
+
def plot_route(map_obj, coordinates, route):
|
83 |
+
for i in range(len(route) - 1):
|
84 |
+
start = coordinates[route[i]]
|
85 |
+
end = coordinates[route[i + 1]]
|
86 |
+
folium.Marker(location=start, tooltip=f'City {route[i] + 1}').add_to(map_obj)
|
87 |
+
folium.Marker(location=end, tooltip=f'City {route[i + 1] + 1}').add_to(map_obj)
|
88 |
+
folium.PolyLine([start, end], color="blue", weight=2.5, opacity=1).add_to(map_obj)
|
89 |
|
90 |
+
# Add markers for start and end points
|
91 |
+
folium.Marker(location=coordinates[0], tooltip='Start', icon=folium.Icon(color="green")).add_to(map_obj)
|
92 |
+
folium.Marker(location=coordinates[route[-2]], tooltip='End', icon=folium.Icon(color="red")).add_to(map_obj)
|
93 |
+
return map_obj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
# Streamlit UI
|
96 |
+
st.title("Traveling Salesman Problem Solver")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
# Input kota
|
99 |
+
city_names = st.text_input("Masukkan nama kota (pisahkan dengan koma)", "Jakarta, Bandung, Surabaya, Yogyakarta")
|
100 |
+
city_list = [city.strip() for city in city_names.split(",")]
|
|
|
101 |
|
102 |
+
if len(city_list) < 2:
|
103 |
+
st.warning("Masukkan setidaknya dua kota.")
|
104 |
+
else:
|
105 |
+
coordinates = [get_coordinates(city) for city in city_list]
|
106 |
+
if None in coordinates:
|
107 |
+
st.error("Ada kota yang tidak ditemukan. Pastikan nama kota benar.")
|
108 |
else:
|
109 |
+
# Buat distance matrix
|
110 |
+
dist_matrix = create_distance_matrix(coordinates)
|
111 |
+
min_cost, optimal_route = held_karp_tsp(dist_matrix)
|
112 |
+
|
113 |
+
# Tampilkan hasil
|
114 |
+
st.write(f"Biaya total minimum: {min_cost:.2f} km")
|
115 |
+
st.write("Rute optimal:", " -> ".join([city_list[i] for i in optimal_route]))
|
116 |
|
117 |
+
# Buat peta
|
118 |
+
map_obj = folium.Map(location=coordinates[0], zoom_start=5)
|
119 |
+
plot_route(map_obj, coordinates, optimal_route)
|
120 |
+
|
121 |
+
# Render map
|
122 |
+
st_folium = st.components.v1.html(folium.Map._repr_html_(map_obj), width=700, height=500)
|