Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,9 @@ import time
|
|
8 |
from functools import lru_cache
|
9 |
from concurrent.futures import ThreadPoolExecutor
|
10 |
|
11 |
-
def
|
12 |
"""
|
13 |
-
Modified Held-Karp algorithm for solving TSP
|
14 |
Returns: (minimum cost, optimal route)
|
15 |
"""
|
16 |
if len(dist_matrix) < 2:
|
@@ -19,19 +19,24 @@ def held_karp_tsp(dist_matrix: np.ndarray, return_to_start: bool = True) -> tupl
|
|
19 |
n = len(dist_matrix)
|
20 |
inf = float('inf')
|
21 |
|
|
|
22 |
dp = np.full((1 << n, n), inf)
|
23 |
parent = np.full((1 << n, n), -1, dtype=int)
|
24 |
|
|
|
25 |
for i in range(1, n):
|
26 |
-
dp[1 << i][i] = dist_matrix[0][i]
|
27 |
|
|
|
28 |
for mask in range(1, 1 << n):
|
29 |
-
if
|
30 |
continue
|
31 |
for curr in range(n):
|
32 |
if not (mask & (1 << curr)):
|
33 |
continue
|
34 |
prev_mask = mask ^ (1 << curr)
|
|
|
|
|
35 |
for prev in range(n):
|
36 |
if not (prev_mask & (1 << prev)):
|
37 |
continue
|
@@ -40,14 +45,18 @@ def held_karp_tsp(dist_matrix: np.ndarray, return_to_start: bool = True) -> tupl
|
|
40 |
dp[mask][curr] = candidate
|
41 |
parent[mask][curr] = prev
|
42 |
|
|
|
43 |
mask = (1 << n) - 1
|
44 |
if return_to_start:
|
45 |
-
|
|
|
46 |
final_cost = dp[mask][curr] + dist_matrix[curr][0]
|
47 |
else:
|
48 |
-
|
|
|
49 |
final_cost = dp[mask][curr]
|
50 |
|
|
|
51 |
path = []
|
52 |
while curr != -1:
|
53 |
path.append(curr)
|
@@ -55,18 +64,17 @@ def held_karp_tsp(dist_matrix: np.ndarray, return_to_start: bool = True) -> tupl
|
|
55 |
curr = parent[mask][curr]
|
56 |
mask = new_mask
|
57 |
|
|
|
58 |
if return_to_start:
|
59 |
-
path.append(0)
|
60 |
path.reverse()
|
61 |
|
62 |
return final_cost, path
|
63 |
|
|
|
64 |
@st.cache_data
|
65 |
def get_route_osrm(start_coords: tuple, end_coords: tuple) -> tuple:
|
66 |
-
"""
|
67 |
-
Get route using OSRM public API
|
68 |
-
Returns: (distance in km, encoded polyline of the route)
|
69 |
-
"""
|
70 |
try:
|
71 |
coords = f"{start_coords[1]},{start_coords[0]};{end_coords[1]},{end_coords[0]}"
|
72 |
url = f"http://router.project-osrm.org/route/v1/driving/{coords}"
|
@@ -110,9 +118,7 @@ def cached_geocoding(city_name: str) -> tuple:
|
|
110 |
return None
|
111 |
|
112 |
def create_distance_matrix_with_routes(coordinates: list) -> tuple:
|
113 |
-
"""
|
114 |
-
Create distance matrix and store routes between all points using OSRM
|
115 |
-
"""
|
116 |
valid_coordinates = [c for c in coordinates if c is not None]
|
117 |
n = len(valid_coordinates)
|
118 |
|
@@ -149,9 +155,7 @@ def create_distance_matrix_with_routes(coordinates: list) -> tuple:
|
|
149 |
|
150 |
def plot_route_with_roads(map_obj: folium.Map, coordinates: list, route: list,
|
151 |
city_names: list, routes_dict: dict, return_to_start: bool) -> folium.Map:
|
152 |
-
"""
|
153 |
-
Plot route using actual road paths from OSRM
|
154 |
-
"""
|
155 |
route_group = folium.FeatureGroup(name="Route")
|
156 |
|
157 |
for i in range(len(route)-1):
|
@@ -204,6 +208,7 @@ def main():
|
|
204 |
st.markdown("""
|
205 |
Temukan rute optimal berkendara antar lokasi.
|
206 |
Masukkan nama lokasi dibawah dan klik 'Optimize Route' untuk melihat hasilnya.
|
|
|
207 |
""")
|
208 |
|
209 |
col1, col2 = st.columns([1, 2])
|
@@ -231,8 +236,9 @@ def main():
|
|
231 |
city_coords = []
|
232 |
|
233 |
for i in range(city_count):
|
|
|
234 |
city_name = st.text_input(
|
235 |
-
|
236 |
value=st.session_state.city_inputs[i],
|
237 |
key=f"city_{i}"
|
238 |
)
|
@@ -264,7 +270,7 @@ def main():
|
|
264 |
start_time = time.time()
|
265 |
|
266 |
dist_matrix, valid_coordinates, routes_dict = create_distance_matrix_with_routes(city_coords)
|
267 |
-
min_cost, optimal_route =
|
268 |
|
269 |
end_time = time.time()
|
270 |
|
|
|
8 |
from functools import lru_cache
|
9 |
from concurrent.futures import ThreadPoolExecutor
|
10 |
|
11 |
+
def held_karp_tsp_fixed_start(dist_matrix: np.ndarray, return_to_start: bool = True) -> tuple:
|
12 |
"""
|
13 |
+
Modified Held-Karp algorithm for solving TSP with fixed starting point (index 0)
|
14 |
Returns: (minimum cost, optimal route)
|
15 |
"""
|
16 |
if len(dist_matrix) < 2:
|
|
|
19 |
n = len(dist_matrix)
|
20 |
inf = float('inf')
|
21 |
|
22 |
+
# Only consider paths that start from index 0
|
23 |
dp = np.full((1 << n, n), inf)
|
24 |
parent = np.full((1 << n, n), -1, dtype=int)
|
25 |
|
26 |
+
# Initialize paths from start (index 0) to other cities
|
27 |
for i in range(1, n):
|
28 |
+
dp[1 << i | 1][i] = dist_matrix[0][i]
|
29 |
|
30 |
+
# Process all possible subsets of cities
|
31 |
for mask in range(1, 1 << n):
|
32 |
+
if not (mask & 1): # Skip if start city (0) is not in the subset
|
33 |
continue
|
34 |
for curr in range(n):
|
35 |
if not (mask & (1 << curr)):
|
36 |
continue
|
37 |
prev_mask = mask ^ (1 << curr)
|
38 |
+
if not prev_mask: # Skip if no previous cities
|
39 |
+
continue
|
40 |
for prev in range(n):
|
41 |
if not (prev_mask & (1 << prev)):
|
42 |
continue
|
|
|
45 |
dp[mask][curr] = candidate
|
46 |
parent[mask][curr] = prev
|
47 |
|
48 |
+
# Find the optimal end point
|
49 |
mask = (1 << n) - 1
|
50 |
if return_to_start:
|
51 |
+
# For closed loop, find best path back to start
|
52 |
+
curr = min(range(1, n), key=lambda x: dp[mask][x] + dist_matrix[x][0])
|
53 |
final_cost = dp[mask][curr] + dist_matrix[curr][0]
|
54 |
else:
|
55 |
+
# For single trip, find best ending point
|
56 |
+
curr = min(range(1, n), key=lambda x: dp[mask][x])
|
57 |
final_cost = dp[mask][curr]
|
58 |
|
59 |
+
# Reconstruct the path
|
60 |
path = []
|
61 |
while curr != -1:
|
62 |
path.append(curr)
|
|
|
64 |
curr = parent[mask][curr]
|
65 |
mask = new_mask
|
66 |
|
67 |
+
path.append(0) # Add start city
|
68 |
if return_to_start:
|
69 |
+
path.append(0) # Add start city again for closed loop
|
70 |
path.reverse()
|
71 |
|
72 |
return final_cost, path
|
73 |
|
74 |
+
# Keep other helper functions unchanged
|
75 |
@st.cache_data
|
76 |
def get_route_osrm(start_coords: tuple, end_coords: tuple) -> tuple:
|
77 |
+
"""Get route using OSRM public API"""
|
|
|
|
|
|
|
78 |
try:
|
79 |
coords = f"{start_coords[1]},{start_coords[0]};{end_coords[1]},{end_coords[0]}"
|
80 |
url = f"http://router.project-osrm.org/route/v1/driving/{coords}"
|
|
|
118 |
return None
|
119 |
|
120 |
def create_distance_matrix_with_routes(coordinates: list) -> tuple:
|
121 |
+
"""Create distance matrix and store routes between all points"""
|
|
|
|
|
122 |
valid_coordinates = [c for c in coordinates if c is not None]
|
123 |
n = len(valid_coordinates)
|
124 |
|
|
|
155 |
|
156 |
def plot_route_with_roads(map_obj: folium.Map, coordinates: list, route: list,
|
157 |
city_names: list, routes_dict: dict, return_to_start: bool) -> folium.Map:
|
158 |
+
"""Plot route using actual road paths from OSRM"""
|
|
|
|
|
159 |
route_group = folium.FeatureGroup(name="Route")
|
160 |
|
161 |
for i in range(len(route)-1):
|
|
|
208 |
st.markdown("""
|
209 |
Temukan rute optimal berkendara antar lokasi.
|
210 |
Masukkan nama lokasi dibawah dan klik 'Optimize Route' untuk melihat hasilnya.
|
211 |
+
Kota 1 akan menjadi titik awal perjalanan.
|
212 |
""")
|
213 |
|
214 |
col1, col2 = st.columns([1, 2])
|
|
|
236 |
city_coords = []
|
237 |
|
238 |
for i in range(city_count):
|
239 |
+
label = "Kota 1 (Titik Awal)" if i == 0 else f"Kota {i+1}"
|
240 |
city_name = st.text_input(
|
241 |
+
label,
|
242 |
value=st.session_state.city_inputs[i],
|
243 |
key=f"city_{i}"
|
244 |
)
|
|
|
270 |
start_time = time.time()
|
271 |
|
272 |
dist_matrix, valid_coordinates, routes_dict = create_distance_matrix_with_routes(city_coords)
|
273 |
+
min_cost, optimal_route = held_karp_tsp_fixed_start(dist_matrix, return_to_start)
|
274 |
|
275 |
end_time = time.time()
|
276 |
|