Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import pipeline
|
8 |
+
import clip
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import onnxruntime as rt
|
11 |
+
import pandas as pd
|
12 |
+
import time
|
13 |
+
|
14 |
+
# Utility class for Waifu Scorer
|
15 |
+
class MLP(torch.nn.Module):
|
16 |
+
def __init__(self, input_size, xcol='emb', ycol='avg_rating', batch_norm=True):
|
17 |
+
super().__init__()
|
18 |
+
self.input_size = input_size
|
19 |
+
self.xcol = xcol
|
20 |
+
self.ycol = ycol
|
21 |
+
self.layers = torch.nn.Sequential(
|
22 |
+
torch.nn.Linear(self.input_size, 2048),
|
23 |
+
torch.nn.ReLU(),
|
24 |
+
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
|
25 |
+
torch.nn.Dropout(0.3),
|
26 |
+
torch.nn.Linear(2048, 512),
|
27 |
+
torch.nn.ReLU(),
|
28 |
+
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
|
29 |
+
torch.nn.Dropout(0.3),
|
30 |
+
torch.nn.Linear(512, 256),
|
31 |
+
torch.nn.ReLU(),
|
32 |
+
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
|
33 |
+
torch.nn.Dropout(0.2),
|
34 |
+
torch.nn.Linear(256, 128),
|
35 |
+
torch.nn.ReLU(),
|
36 |
+
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
|
37 |
+
torch.nn.Dropout(0.1),
|
38 |
+
torch.nn.Linear(128, 32),
|
39 |
+
torch.nn.ReLU(),
|
40 |
+
torch.nn.Linear(32, 1)
|
41 |
+
)
|
42 |
+
|
43 |
+
def forward(self, x):
|
44 |
+
return self.layers(x)
|
45 |
+
|
46 |
+
class WaifuScorer:
|
47 |
+
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
48 |
+
self.device = device
|
49 |
+
model_path = hf_hub_download("Eugeoter/waifu-scorer-v4-beta", "model.pth", cache_dir="models")
|
50 |
+
self.mlp = self._load_model(model_path, input_size=768, device=device)
|
51 |
+
self.model2, self.preprocess = clip.load("ViT-L/14", device=device)
|
52 |
+
self.dtype = self.mlp.dtype
|
53 |
+
self.mlp.eval()
|
54 |
+
|
55 |
+
def _load_model(self, model_path, input_size=768, device='cuda'):
|
56 |
+
model = MLP(input_size=input_size)
|
57 |
+
s = torch.load(model_path, map_location=device)
|
58 |
+
model.load_state_dict(s)
|
59 |
+
model.to(device)
|
60 |
+
return model
|
61 |
+
|
62 |
+
def _normalized(self, a, order=2, dim=-1):
|
63 |
+
l2 = a.norm(order, dim, keepdim=True)
|
64 |
+
l2[l2 == 0] = 1
|
65 |
+
return a / l2
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def _encode_images(self, images):
|
69 |
+
if isinstance(images, Image.Image):
|
70 |
+
images = [images]
|
71 |
+
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
|
72 |
+
image_batch = torch.cat(image_tensors).to(self.device)
|
73 |
+
image_features = self.model2.encode_image(image_batch)
|
74 |
+
im_emb_arr = self._normalized(image_features).cpu().float()
|
75 |
+
return im_emb_arr
|
76 |
+
|
77 |
+
@torch.no_grad()
|
78 |
+
def score(self, image):
|
79 |
+
if isinstance(image, np.ndarray):
|
80 |
+
image = Image.fromarray(image)
|
81 |
+
images = [image, image] # batch norm needs at least 2 images
|
82 |
+
images = self._encode_images(images).to(device=self.device, dtype=self.dtype)
|
83 |
+
predictions = self.mlp(images)
|
84 |
+
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
85 |
+
return scores[0] # Return first score only
|
86 |
+
|
87 |
+
class AnimeAestheticPredictor:
|
88 |
+
def __init__(self):
|
89 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx", cache_dir="models")
|
90 |
+
self.model = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
|
91 |
+
|
92 |
+
def predict(self, img):
|
93 |
+
if isinstance(img, Image.Image):
|
94 |
+
img = np.array(img)
|
95 |
+
img = img.astype(np.float32) / 255
|
96 |
+
s = 768
|
97 |
+
h, w = img.shape[:-1]
|
98 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
99 |
+
ph, pw = s - h, s - w
|
100 |
+
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
101 |
+
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
|
102 |
+
img_input = np.transpose(img_input, (2, 0, 1))
|
103 |
+
img_input = img_input[np.newaxis, :]
|
104 |
+
pred = self.model.run(None, {"img": img_input})[0].item()
|
105 |
+
return pred
|
106 |
+
|
107 |
+
class ImageEvaluator:
|
108 |
+
def __init__(self):
|
109 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
110 |
+
self.setup_models()
|
111 |
+
self.results_df = None
|
112 |
+
self.temp_dir = "temp_images"
|
113 |
+
if not os.path.exists(self.temp_dir):
|
114 |
+
os.makedirs(self.temp_dir)
|
115 |
+
if not os.path.exists("output"):
|
116 |
+
os.makedirs("output/hq_folder", exist_ok=True)
|
117 |
+
os.makedirs("output/lq_folder", exist_ok=True)
|
118 |
+
|
119 |
+
def setup_models(self):
|
120 |
+
# Initialize all models
|
121 |
+
print("Setting up models (this may take a few minutes)...")
|
122 |
+
|
123 |
+
# ShadowLilac's aesthetic model
|
124 |
+
self.aesthetic_shadow = pipeline("image-classification",
|
125 |
+
model="shadowlilac/aesthetic-shadow-v2",
|
126 |
+
device=self.device)
|
127 |
+
|
128 |
+
# WaifuScorer model
|
129 |
+
try:
|
130 |
+
self.waifu_scorer = WaifuScorer(device=self.device)
|
131 |
+
except Exception as e:
|
132 |
+
print(f"Error loading WaifuScorer: {e}")
|
133 |
+
self.waifu_scorer = None
|
134 |
+
|
135 |
+
# CafeAI models
|
136 |
+
self.cafe_aesthetic = pipeline("image-classification", "cafeai/cafe_aesthetic")
|
137 |
+
self.cafe_style = pipeline("image-classification", "cafeai/cafe_style")
|
138 |
+
self.cafe_waifu = pipeline("image-classification", "cafeai/cafe_waifu")
|
139 |
+
|
140 |
+
# Anime Aesthetic model
|
141 |
+
self.anime_aesthetic = AnimeAestheticPredictor()
|
142 |
+
|
143 |
+
print("All models loaded successfully!")
|
144 |
+
|
145 |
+
def evaluate_image(self, image_path):
|
146 |
+
"""Evaluate a single image with all models"""
|
147 |
+
if isinstance(image_path, str):
|
148 |
+
image = Image.open(image_path).convert('RGB')
|
149 |
+
else:
|
150 |
+
image = image_path
|
151 |
+
|
152 |
+
results = {}
|
153 |
+
|
154 |
+
# ShadowLilac evaluation
|
155 |
+
shadow_result = self.aesthetic_shadow(images=[image])
|
156 |
+
results["shadow_hq"] = round([p for p in shadow_result[0] if p['label'] == 'hq'][0]['score'], 2)
|
157 |
+
|
158 |
+
# WaifuScorer evaluation
|
159 |
+
if self.waifu_scorer:
|
160 |
+
try:
|
161 |
+
results["waifu_score"] = round(self.waifu_scorer.score(image), 2)
|
162 |
+
except Exception as e:
|
163 |
+
results["waifu_score"] = 0
|
164 |
+
print(f"Error with WaifuScorer: {e}")
|
165 |
+
|
166 |
+
# CafeAI evaluations
|
167 |
+
cafe_aesthetic_result = self.cafe_aesthetic(image, top_k=2)
|
168 |
+
results["cafe_aesthetic"] = round(next((item["score"] for item in cafe_aesthetic_result if item["label"] == "aesthetic"), 0), 2)
|
169 |
+
|
170 |
+
# Get top style
|
171 |
+
cafe_style_result = self.cafe_style(image, top_k=5)
|
172 |
+
results["cafe_top_style"] = cafe_style_result[0]["label"]
|
173 |
+
results["cafe_top_style_score"] = round(cafe_style_result[0]["score"], 2)
|
174 |
+
|
175 |
+
# Get top waifu style if applicable
|
176 |
+
cafe_waifu_result = self.cafe_waifu(image, top_k=5)
|
177 |
+
results["cafe_top_waifu"] = cafe_waifu_result[0]["label"]
|
178 |
+
results["cafe_top_waifu_score"] = round(cafe_waifu_result[0]["score"], 2)
|
179 |
+
|
180 |
+
# Anime aesthetic evaluation
|
181 |
+
try:
|
182 |
+
results["anime_aesthetic"] = round(self.anime_aesthetic.predict(image), 2)
|
183 |
+
except Exception as e:
|
184 |
+
results["anime_aesthetic"] = 0
|
185 |
+
print(f"Error with Anime Aesthetic: {e}")
|
186 |
+
|
187 |
+
# Calculate average score
|
188 |
+
scores = [results["shadow_hq"] * 10] # Scale to 0-10
|
189 |
+
if self.waifu_scorer:
|
190 |
+
scores.append(results["waifu_score"])
|
191 |
+
scores.append(results["cafe_aesthetic"] * 10) # Scale to 0-10
|
192 |
+
scores.append(results["anime_aesthetic"])
|
193 |
+
|
194 |
+
results["average_score"] = round(sum(scores) / len(scores), 2)
|
195 |
+
|
196 |
+
return results
|
197 |
+
|
198 |
+
def process_images(self, files, threshold=0.5, progress=None):
|
199 |
+
"""Process multiple images and return results dataframe"""
|
200 |
+
results = []
|
201 |
+
total_files = len(files)
|
202 |
+
|
203 |
+
# Clean temp directory
|
204 |
+
for f in os.listdir(self.temp_dir):
|
205 |
+
os.remove(os.path.join(self.temp_dir, f))
|
206 |
+
|
207 |
+
# Process each file and save a copy to temp directory
|
208 |
+
for i, file in enumerate(files):
|
209 |
+
if progress is not None:
|
210 |
+
progress(i / total_files, f"Processing {i+1}/{total_files}: {os.path.basename(file)}")
|
211 |
+
|
212 |
+
# Copy file to temp directory with clean name
|
213 |
+
filename = os.path.basename(file)
|
214 |
+
temp_path = os.path.join(self.temp_dir, filename)
|
215 |
+
shutil.copy(file, temp_path)
|
216 |
+
|
217 |
+
# Evaluate the image
|
218 |
+
results_dict = self.evaluate_image(temp_path)
|
219 |
+
results_dict["filename"] = filename
|
220 |
+
results_dict["path"] = temp_path
|
221 |
+
results_dict["is_hq"] = results_dict["shadow_hq"] >= threshold
|
222 |
+
|
223 |
+
# Copy to output directory based on HQ threshold
|
224 |
+
destination = "output/hq_folder" if results_dict["is_hq"] else "output/lq_folder"
|
225 |
+
shutil.copy(temp_path, os.path.join(destination, filename))
|
226 |
+
|
227 |
+
results.append(results_dict)
|
228 |
+
|
229 |
+
# Create dataframe and sort by average score
|
230 |
+
self.results_df = pd.DataFrame(results)
|
231 |
+
self.results_df = self.results_df.sort_values(by="average_score", ascending=False)
|
232 |
+
|
233 |
+
if progress is not None:
|
234 |
+
progress(1.0, "Processing complete!")
|
235 |
+
|
236 |
+
return self.results_df
|
237 |
+
|
238 |
+
def get_results_html(self):
|
239 |
+
"""Generate HTML with results and image previews"""
|
240 |
+
if self.results_df is None:
|
241 |
+
return "<p>No results available. Please process images first.</p>"
|
242 |
+
|
243 |
+
html = "<h2>Results (Sorted by Average Score)</h2>"
|
244 |
+
html += "<table style='width:100%; border-collapse: collapse;'>"
|
245 |
+
html += "<tr style='background-color:#f0f0f0'>"
|
246 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Image</th>"
|
247 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Filename</th>"
|
248 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Average</th>"
|
249 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Shadow HQ</th>"
|
250 |
+
if "waifu_score" in self.results_df.columns:
|
251 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Waifu</th>"
|
252 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Cafe</th>"
|
253 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Anime</th>"
|
254 |
+
html += "<th style='padding:8px; border:1px solid #ddd;'>Style</th>"
|
255 |
+
html += "</tr>"
|
256 |
+
|
257 |
+
for _, row in self.results_df.iterrows():
|
258 |
+
# Determine row color based on HQ status
|
259 |
+
row_color = "#e8f5e9" if row["is_hq"] else "#ffebee"
|
260 |
+
|
261 |
+
html += f"<tr style='background-color:{row_color}'>"
|
262 |
+
# Image thumbnail
|
263 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'><img src='file={row['path']}' height='100'></td>"
|
264 |
+
# Filename
|
265 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['filename']}</td>"
|
266 |
+
# Average score
|
267 |
+
html += f"<td style='padding:8px; border:1px solid #ddd; font-weight:bold;'>{row['average_score']}</td>"
|
268 |
+
# Shadow HQ score
|
269 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['shadow_hq']}</td>"
|
270 |
+
# Waifu score
|
271 |
+
if "waifu_score" in self.results_df.columns:
|
272 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['waifu_score']}</td>"
|
273 |
+
# Cafe aesthetic
|
274 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['cafe_aesthetic']}</td>"
|
275 |
+
# Anime aesthetic
|
276 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['anime_aesthetic']}</td>"
|
277 |
+
# Top style
|
278 |
+
html += f"<td style='padding:8px; border:1px solid #ddd;'>{row['cafe_top_style']} ({row['cafe_top_style_score']})</td>"
|
279 |
+
html += "</tr>"
|
280 |
+
|
281 |
+
html += "</table>"
|
282 |
+
return html
|
283 |
+
|
284 |
+
def export_results_csv(self, output_path="results.csv"):
|
285 |
+
"""Export results to CSV file"""
|
286 |
+
if self.results_df is not None:
|
287 |
+
self.results_df.to_csv(output_path, index=False)
|
288 |
+
return f"Results exported to {output_path}"
|
289 |
+
return "No results to export"
|
290 |
+
|
291 |
+
# Create Gradio interface
|
292 |
+
def create_interface():
|
293 |
+
evaluator = ImageEvaluator()
|
294 |
+
|
295 |
+
with gr.Blocks(title="Comprehensive Image Evaluation Tool", theme=gr.themes.Soft()) as app:
|
296 |
+
gr.Markdown("""
|
297 |
+
# 🖼️ Comprehensive Image Evaluation Tool
|
298 |
+
|
299 |
+
Upload images to evaluate their aesthetic quality using multiple models:
|
300 |
+
|
301 |
+
- **ShadowLilac** - General aesthetic quality (0-1)
|
302 |
+
- **WaifuScorer** - Anime-style quality score (0-10)
|
303 |
+
- **CafeAI** - Style classification and aesthetic assessment
|
304 |
+
- **Anime Aesthetic** - Specialized for anime/manga art (0-10)
|
305 |
+
|
306 |
+
The tool will provide an average score and classify images as high or low quality based on your threshold.
|
307 |
+
""")
|
308 |
+
|
309 |
+
with gr.Row():
|
310 |
+
with gr.Column(scale=1):
|
311 |
+
input_files = gr.Files(label="Upload Images", file_types=["image"], file_count="multiple")
|
312 |
+
threshold = gr.Slider(label="HQ Threshold (ShadowLilac score)", min=0, max=1, value=0.5, step=0.01)
|
313 |
+
process_btn = gr.Button("Process Images", variant="primary")
|
314 |
+
progress_bar = gr.Progress()
|
315 |
+
export_btn = gr.Button("Export Results to CSV")
|
316 |
+
export_msg = gr.Textbox(label="Export Status")
|
317 |
+
|
318 |
+
with gr.Column(scale=2):
|
319 |
+
results_html = gr.HTML(label="Results")
|
320 |
+
|
321 |
+
with gr.Row():
|
322 |
+
gr.Markdown("""
|
323 |
+
### Single Image Evaluation
|
324 |
+
Upload a single image to get detailed evaluation metrics.
|
325 |
+
""")
|
326 |
+
|
327 |
+
with gr.Row():
|
328 |
+
with gr.Column(scale=1):
|
329 |
+
single_img = gr.Image(label="Upload Single Image", type="pil")
|
330 |
+
single_eval_btn = gr.Button("Evaluate")
|
331 |
+
|
332 |
+
with gr.Column(scale=2):
|
333 |
+
shadow_score = gr.Number(label="ShadowLilac HQ Score (0-1)")
|
334 |
+
waifu_score = gr.Number(label="Waifu Score (0-10)")
|
335 |
+
cafe_aesthetic = gr.Number(label="Cafe Aesthetic Score (0-1)")
|
336 |
+
anime_aesthetic = gr.Number(label="Anime Aesthetic Score (0-10)")
|
337 |
+
average_score = gr.Number(label="Average Score (0-10)")
|
338 |
+
style_label = gr.Label(label="Top Style Categories (Cafe)")
|
339 |
+
|
340 |
+
def process_images_callback(files, threshold, progress=progress_bar):
|
341 |
+
file_paths = [f.name for f in files]
|
342 |
+
evaluator.process_images(file_paths, threshold, progress)
|
343 |
+
return evaluator.get_results_html()
|
344 |
+
|
345 |
+
def export_callback():
|
346 |
+
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
347 |
+
filename = f"results_{timestamp}.csv"
|
348 |
+
return evaluator.export_results_csv(filename)
|
349 |
+
|
350 |
+
def evaluate_single(image):
|
351 |
+
if image is None:
|
352 |
+
return 0, 0, 0, 0, 0, []
|
353 |
+
|
354 |
+
results = evaluator.evaluate_image(image)
|
355 |
+
|
356 |
+
# Prepare style labels
|
357 |
+
style_data = {
|
358 |
+
results["cafe_top_style"]: results["cafe_top_style_score"],
|
359 |
+
results["cafe_top_waifu"]: results["cafe_top_waifu_score"]
|
360 |
+
}
|
361 |
+
|
362 |
+
return (
|
363 |
+
results["shadow_hq"],
|
364 |
+
results["waifu_score"] if "waifu_score" in results else 0,
|
365 |
+
results["cafe_aesthetic"],
|
366 |
+
results["anime_aesthetic"],
|
367 |
+
results["average_score"],
|
368 |
+
style_data
|
369 |
+
)
|
370 |
+
|
371 |
+
# Set up event handlers
|
372 |
+
process_btn.click(
|
373 |
+
process_images_callback,
|
374 |
+
inputs=[input_files, threshold],
|
375 |
+
outputs=[results_html]
|
376 |
+
)
|
377 |
+
|
378 |
+
export_btn.click(
|
379 |
+
export_callback,
|
380 |
+
inputs=[],
|
381 |
+
outputs=[export_msg]
|
382 |
+
)
|
383 |
+
|
384 |
+
single_eval_btn.click(
|
385 |
+
evaluate_single,
|
386 |
+
inputs=[single_img],
|
387 |
+
outputs=[shadow_score, waifu_score, cafe_aesthetic, anime_aesthetic, average_score, style_label]
|
388 |
+
)
|
389 |
+
|
390 |
+
return app
|
391 |
+
|
392 |
+
if __name__ == "__main__":
|
393 |
+
app = create_interface()
|
394 |
+
app.launch()
|