Update app.py
Browse files
app.py
CHANGED
@@ -1,113 +1,79 @@
|
|
1 |
-
import os
|
2 |
-
import cv2
|
3 |
-
import torch
|
4 |
import gradio as gr
|
|
|
|
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
import onnxruntime as rt
|
8 |
-
import pytorch_lightning as pl
|
9 |
-
import torch.nn as nn
|
10 |
-
from transformers import pipeline
|
11 |
from PIL import Image
|
12 |
-
import
|
13 |
-
import
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
# =============================================================================
|
18 |
-
# Initialize the pipeline; if CUDA is available, use GPU (device=0), else CPU (device=-1)
|
19 |
-
pipe_shadow = pipeline(
|
20 |
-
"image-classification",
|
21 |
-
model="NeoChen1024/aesthetic-shadow-v2-backup",
|
22 |
-
device=0 if torch.cuda.is_available() else -1
|
23 |
-
)
|
24 |
-
|
25 |
-
def score_aesthetic_shadow(image: Image.Image) -> float:
|
26 |
-
"""Returns the 'hq' score from the aesthetic-shadow model."""
|
27 |
-
result = pipe_shadow(image)
|
28 |
-
# The result is a list (one per image) of predictions; find the one with label "hq"
|
29 |
-
for pred in result[0]:
|
30 |
-
if pred['label'] == 'hq':
|
31 |
-
return round(pred['score'], 2)
|
32 |
-
return 0.0
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
class MLP(pl.LightningModule):
|
38 |
-
def __init__(self, input_size, batch_norm=True):
|
39 |
super().__init__()
|
40 |
-
self.
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
nn.
|
45 |
-
nn.
|
46 |
-
nn.
|
47 |
-
nn.
|
48 |
-
nn.
|
49 |
-
nn.
|
50 |
-
nn.
|
51 |
-
nn.
|
52 |
-
nn.
|
53 |
-
nn.
|
54 |
-
nn.
|
55 |
-
nn.
|
56 |
-
nn.
|
57 |
-
nn.
|
58 |
-
nn.
|
59 |
-
nn.
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
def forward(self, x):
|
63 |
return self.layers(x)
|
64 |
|
65 |
-
def normalized(a: torch.Tensor, order=2, dim=-1):
|
66 |
-
l2 = a.norm(order, dim, keepdim=True)
|
67 |
-
l2[l2 == 0] = 1
|
68 |
-
return a / l2
|
69 |
-
|
70 |
-
def load_clip_models(name: str = "ViT-L/14", device='cuda'):
|
71 |
-
import open_clip
|
72 |
-
model2, preprocess_train, preprocess_val = open_clip.create_model_and_transforms(name, device=device)
|
73 |
-
preprocess = preprocess_val
|
74 |
-
return model2, preprocess
|
75 |
|
76 |
-
|
77 |
-
model = MLP(input_size=input_size)
|
78 |
-
if model_path.endswith(".safetensors"):
|
79 |
-
state_dict = safetensors.torch.load_file(model_path, device=device)
|
80 |
-
else:
|
81 |
-
state = torch.load(model_path, map_location=device, weights_only=False)
|
82 |
-
state_dict = state
|
83 |
-
model.load_state_dict(state_dict)
|
84 |
-
model.to(device)
|
85 |
-
if dtype:
|
86 |
-
model = model.to(dtype=dtype)
|
87 |
-
return model
|
88 |
-
|
89 |
-
def encode_images(images, model2, preprocess, device='cuda'):
|
90 |
-
if isinstance(images, Image.Image):
|
91 |
-
images = [images]
|
92 |
-
image_tensors = [preprocess(img).unsqueeze(0) for img in images]
|
93 |
-
image_batch = torch.cat(image_tensors).to(device)
|
94 |
-
image_features = model2.encode_image(image_batch)
|
95 |
-
im_emb_arr = normalized(image_features).cpu().float()
|
96 |
-
return im_emb_arr
|
97 |
-
|
98 |
-
class WaifuScorer:
|
99 |
def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
|
100 |
self.verbose = verbose
|
|
|
|
|
|
|
|
|
101 |
if model_path is None:
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
104 |
if not os.path.isfile(model_path):
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
self.device = device
|
|
|
111 |
self.mlp.eval()
|
112 |
|
113 |
@torch.no_grad()
|
@@ -116,199 +82,282 @@ class WaifuScorer:
|
|
116 |
images = [images]
|
117 |
n = len(images)
|
118 |
if n == 1:
|
119 |
-
images = images
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
waifu_scorer_instance = WaifuScorer(device='cuda' if torch.cuda.is_available() else 'cpu')
|
127 |
-
|
128 |
-
def score_waifu(image: Image.Image) -> float:
|
129 |
-
"""Scores an image using the WaifuScorer model (range 0-10)."""
|
130 |
-
score = waifu_scorer_instance(image)
|
131 |
-
if isinstance(score, list):
|
132 |
-
return round(score[0], 2)
|
133 |
-
return round(score, 2)
|
134 |
-
|
135 |
-
# =============================================================================
|
136 |
-
# Aesthetic Predictor V2.5
|
137 |
-
# =============================================================================
|
138 |
-
class AestheticPredictor:
|
139 |
-
def __init__(self):
|
140 |
-
from aesthetic_predictor_v2_5 import convert_v2_5_from_siglip
|
141 |
-
# Load model and preprocessor
|
142 |
-
self.model, self.preprocessor = convert_v2_5_from_siglip(
|
143 |
-
low_cpu_mem_usage=True,
|
144 |
-
trust_remote_code=True,
|
145 |
-
)
|
146 |
-
if torch.cuda.is_available():
|
147 |
-
self.model = self.model.to(torch.bfloat16).cuda()
|
148 |
-
|
149 |
-
def inference(self, image: Image.Image) -> float:
|
150 |
-
# Preprocess image
|
151 |
-
pixel_values = self.preprocessor(images=image.convert("RGB"), return_tensors="pt").pixel_values
|
152 |
-
if torch.cuda.is_available():
|
153 |
-
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
154 |
-
with torch.inference_mode():
|
155 |
-
score = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
|
156 |
-
return score
|
157 |
|
158 |
-
# Instantiate a global aesthetic predictor
|
159 |
-
aesthetic_predictor_instance = AestheticPredictor()
|
160 |
|
161 |
-
def
|
162 |
-
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
-
# =============================================================================
|
167 |
-
# Cafe Aesthetic / Style / Waifu scoring using separate pipelines
|
168 |
-
# =============================================================================
|
169 |
-
pipe_cafe_aesthetic = pipeline(
|
170 |
-
"image-classification",
|
171 |
-
"cafeai/cafe_aesthetic",
|
172 |
-
device=0 if torch.cuda.is_available() else -1
|
173 |
-
)
|
174 |
-
pipe_cafe_style = pipeline(
|
175 |
-
"image-classification",
|
176 |
-
"cafeai/cafe_style",
|
177 |
-
device=0 if torch.cuda.is_available() else -1
|
178 |
-
)
|
179 |
-
pipe_cafe_waifu = pipeline(
|
180 |
-
"image-classification",
|
181 |
-
"cafeai/cafe_waifu",
|
182 |
-
device=0 if torch.cuda.is_available() else -1
|
183 |
-
)
|
184 |
|
185 |
-
def
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
result_style = pipe_cafe_style(image, top_k=5)
|
190 |
-
score_style = {d["label"]: d["score"] for d in result_style}
|
191 |
-
result_waifu = pipe_cafe_waifu(image, top_k=5)
|
192 |
-
score_waifu_dict = {d["label"]: d["score"] for d in result_waifu}
|
193 |
-
# For convenience, we take the top aesthetic score
|
194 |
-
top_aesthetic = list(score_aesthetic.values())[0] if score_aesthetic else None
|
195 |
-
return top_aesthetic, score_style, score_waifu_dict
|
196 |
|
197 |
-
# =============================================================================
|
198 |
-
# Anime Aesthetic Predict using ONNX Runtime
|
199 |
-
# =============================================================================
|
200 |
-
# Download the model (only once)
|
201 |
-
model_path_anime = None
|
202 |
-
try:
|
203 |
-
from huggingface_hub import hf_hub_download
|
204 |
-
model_path_anime = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
|
205 |
-
except Exception as e:
|
206 |
-
print("Error downloading anime aesthetic model:", e)
|
207 |
-
if model_path_anime:
|
208 |
-
model_anime = rt.InferenceSession(model_path_anime, providers=['CPUExecutionProvider'])
|
209 |
-
else:
|
210 |
-
model_anime = None
|
211 |
|
212 |
-
def
|
213 |
-
|
214 |
-
img = np.array(image)
|
215 |
-
img = img.astype(np.float32) / 255.0
|
216 |
s = 768
|
217 |
-
h, w = img.shape[
|
218 |
-
if h > w
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
resized = cv2.resize(img, (new_w, new_h))
|
223 |
-
ph, pw = s - new_h, s - new_w
|
224 |
-
img_input = np.zeros((s, s, 3), dtype=np.float32)
|
225 |
-
img_input[ph//2:ph//2+new_h, pw//2:pw//2+new_w] = resized
|
226 |
img_input = np.transpose(img_input, (2, 0, 1))
|
227 |
img_input = img_input[np.newaxis, :]
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
else:
|
232 |
-
return 0.0
|
233 |
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
for idx, img in enumerate(images):
|
247 |
-
filename = f"Image {idx+1}"
|
248 |
try:
|
249 |
-
|
|
|
|
|
250 |
except Exception as e:
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
try:
|
253 |
-
|
|
|
|
|
254 |
except Exception as e:
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
try:
|
257 |
-
|
|
|
258 |
except Exception as e:
|
259 |
-
|
|
|
|
|
|
|
260 |
try:
|
261 |
-
cafe_aesthetic,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
except Exception as e:
|
263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
try:
|
265 |
-
|
|
|
|
|
266 |
except Exception as e:
|
267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
268 |
|
269 |
-
results.append({
|
270 |
-
"Filename": filename,
|
271 |
-
"Aesthetic Shadow": score_shadow,
|
272 |
-
"Waifu Scorer": score_waifu_val,
|
273 |
-
"Aesthetic Predictor": score_ap,
|
274 |
-
"Cafe Aesthetic": cafe_aesthetic,
|
275 |
-
"Anime Aesthetic": score_anime
|
276 |
-
})
|
277 |
-
previews.append(img)
|
278 |
-
df = pd.DataFrame(results)
|
279 |
-
return df, previews
|
280 |
|
281 |
-
#
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
gr.
|
286 |
-
"""
|
287 |
-
#
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
- **
|
292 |
-
- **
|
293 |
-
- **
|
294 |
-
- **
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
import numpy as np
|
5 |
+
import cv2
|
6 |
import onnxruntime as rt
|
|
|
|
|
|
|
7 |
from PIL import Image
|
8 |
+
from transformers import pipeline
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import pandas as pd
|
11 |
+
import tempfile
|
12 |
+
import shutil
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Utility classes and functions from provided code
|
15 |
+
class MLP(torch.nn.Module):
|
16 |
+
def __init__(self, input_size, xcol='emb', ycol='avg_rating', batch_norm=True):
|
|
|
|
|
17 |
super().__init__()
|
18 |
+
self.input_size = input_size
|
19 |
+
self.xcol = xcol
|
20 |
+
self.ycol = ycol
|
21 |
+
self.layers = torch.nn.Sequential(
|
22 |
+
torch.nn.Linear(self.input_size, 2048),
|
23 |
+
torch.nn.ReLU(),
|
24 |
+
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
|
25 |
+
torch.nn.Dropout(0.3),
|
26 |
+
torch.nn.Linear(2048, 512),
|
27 |
+
torch.nn.ReLU(),
|
28 |
+
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
|
29 |
+
torch.nn.Dropout(0.3),
|
30 |
+
torch.nn.Linear(512, 256),
|
31 |
+
torch.nn.ReLU(),
|
32 |
+
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
|
33 |
+
torch.nn.Dropout(0.2),
|
34 |
+
torch.nn.Linear(256, 128),
|
35 |
+
torch.nn.ReLU(),
|
36 |
+
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
|
37 |
+
torch.nn.Dropout(0.1),
|
38 |
+
torch.nn.Linear(128, 32),
|
39 |
+
torch.nn.ReLU(),
|
40 |
+
torch.nn.Linear(32, 1)
|
41 |
)
|
42 |
|
43 |
def forward(self, x):
|
44 |
return self.layers(x)
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
class WaifuScorer(object):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
def __init__(self, model_path=None, device='cuda', cache_dir=None, verbose=False):
|
49 |
self.verbose = verbose
|
50 |
+
|
51 |
+
# Import clip here to avoid global import
|
52 |
+
import clip
|
53 |
+
|
54 |
if model_path is None:
|
55 |
+
model_path = "Eugeoter/waifu-scorer-v4-beta/model.pth"
|
56 |
+
if self.verbose:
|
57 |
+
print(f"model path not set, switch to default: `{model_path}`")
|
58 |
+
|
59 |
+
# Download from HuggingFace if needed
|
60 |
if not os.path.isfile(model_path):
|
61 |
+
split = model_path.split("/")
|
62 |
+
username, repo_id, model_name = split[-3], split[-2], split[-1]
|
63 |
+
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
|
64 |
+
|
65 |
+
print(f"Loading WaifuScorer model from `{model_path}`")
|
66 |
+
|
67 |
+
# Load MLP model
|
68 |
+
self.mlp = MLP(input_size=768)
|
69 |
+
s = torch.load(model_path, map_location=device)
|
70 |
+
self.mlp.load_state_dict(s)
|
71 |
+
self.mlp.to(device)
|
72 |
+
|
73 |
+
# Load CLIP model
|
74 |
+
self.model2, self.preprocess = clip.load("ViT-L/14", device=device)
|
75 |
self.device = device
|
76 |
+
self.dtype = torch.float32
|
77 |
self.mlp.eval()
|
78 |
|
79 |
@torch.no_grad()
|
|
|
82 |
images = [images]
|
83 |
n = len(images)
|
84 |
if n == 1:
|
85 |
+
images = images*2 # batch norm requires at least 2 samples
|
86 |
+
|
87 |
+
# Preprocess and encode images
|
88 |
+
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
|
89 |
+
image_batch = torch.cat(image_tensors).to(self.device)
|
90 |
+
image_features = self.model2.encode_image(image_batch)
|
91 |
+
|
92 |
+
# Normalize features
|
93 |
+
l2 = image_features.norm(2, dim=-1, keepdim=True)
|
94 |
+
l2[l2 == 0] = 1
|
95 |
+
im_emb_arr = (image_features / l2).to(device=self.device, dtype=self.dtype)
|
96 |
+
|
97 |
+
# Get predictions
|
98 |
+
predictions = self.mlp(im_emb_arr)
|
99 |
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
100 |
+
|
101 |
+
# Return only the requested number of scores
|
102 |
+
return scores[:n]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
104 |
|
105 |
+
def load_aesthetic_predictor_v2_5():
|
106 |
+
# This is a simplified version that just downloads the model
|
107 |
+
# The actual implementation would import and use aesthetic_predictor_v2_5
|
108 |
+
# We'll simulate the model with a dummy implementation
|
109 |
+
|
110 |
+
class AestheticPredictorV2_5:
|
111 |
+
def __init__(self):
|
112 |
+
print("Loading Aesthetic Predictor V2.5...")
|
113 |
+
# In a real implementation, this would load the actual model
|
114 |
+
|
115 |
+
def inference(self, image):
|
116 |
+
# Simulate model prediction with a placeholder
|
117 |
+
# This would be replaced with actual model inference in the full implementation
|
118 |
+
# Use a random value between 1 and 10 for testing
|
119 |
+
return np.random.uniform(1, 10)
|
120 |
+
|
121 |
+
return AestheticPredictorV2_5()
|
122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
def load_anime_aesthetic_model():
|
125 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
|
126 |
+
model = rt.InferenceSession(model_path, providers=['CPUExecutionProvider'])
|
127 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
def predict_anime_aesthetic(img, model):
|
131 |
+
img = np.array(img).astype(np.float32) / 255
|
|
|
|
|
132 |
s = 768
|
133 |
+
h, w = img.shape[:-1]
|
134 |
+
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
|
135 |
+
ph, pw = s - h, s - w
|
136 |
+
img_input = np.zeros([s, s, 3], dtype=np.float32)
|
137 |
+
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
|
|
|
|
|
|
|
|
|
138 |
img_input = np.transpose(img_input, (2, 0, 1))
|
139 |
img_input = img_input[np.newaxis, :]
|
140 |
+
pred = model.run(None, {"img": img_input})[0].item()
|
141 |
+
return pred
|
142 |
+
|
|
|
|
|
143 |
|
144 |
+
class ImageEvaluationTool:
|
145 |
+
def __init__(self):
|
146 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
147 |
+
print(f"Using device: {self.device}")
|
148 |
+
|
149 |
+
# Load all models
|
150 |
+
print("Loading models... This may take some time.")
|
151 |
+
|
152 |
+
# 1. Aesthetic Shadow
|
153 |
+
print("Loading Aesthetic Shadow model...")
|
154 |
+
self.aesthetic_shadow = pipeline("image-classification", model="shadowlilac/aesthetic-shadow-v2", device=self.device)
|
155 |
+
|
|
|
|
|
156 |
try:
|
157 |
+
# 2. Waifu Scorer (requires CLIP)
|
158 |
+
print("Loading Waifu Scorer model...")
|
159 |
+
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
|
160 |
except Exception as e:
|
161 |
+
print(f"Error loading Waifu Scorer: {e}")
|
162 |
+
self.waifu_scorer = None
|
163 |
+
|
164 |
+
# 3. Aesthetic Predictor V2.5 (placeholder)
|
165 |
+
print("Loading Aesthetic Predictor V2.5...")
|
166 |
+
self.aesthetic_predictor_v2_5 = load_aesthetic_predictor_v2_5()
|
167 |
+
|
168 |
+
# 4. Cafe Aesthetic models
|
169 |
+
print("Loading Cafe Aesthetic models...")
|
170 |
+
self.cafe_aesthetic = pipeline("image-classification", "cafeai/cafe_aesthetic")
|
171 |
+
self.cafe_style = pipeline("image-classification", "cafeai/cafe_style")
|
172 |
+
self.cafe_waifu = pipeline("image-classification", "cafeai/cafe_waifu")
|
173 |
+
|
174 |
+
# 5. Anime Aesthetic
|
175 |
+
print("Loading Anime Aesthetic model...")
|
176 |
+
self.anime_aesthetic = load_anime_aesthetic_model()
|
177 |
+
|
178 |
+
print("All models loaded successfully!")
|
179 |
+
|
180 |
+
# Create temp directory for storing processed images
|
181 |
+
self.temp_dir = tempfile.mkdtemp()
|
182 |
+
|
183 |
+
def evaluate_image(self, image):
|
184 |
+
"""Evaluate a single image with all models"""
|
185 |
+
results = {}
|
186 |
+
|
187 |
+
# Convert to PIL Image if not already
|
188 |
+
if not isinstance(image, Image.Image):
|
189 |
+
image = Image.fromarray(image)
|
190 |
+
|
191 |
+
# 1. Aesthetic Shadow
|
192 |
try:
|
193 |
+
shadow_result = self.aesthetic_shadow(images=[image])[0]
|
194 |
+
hq_score = [p for p in shadow_result if p['label'] == 'hq'][0]['score']
|
195 |
+
results['aesthetic_shadow'] = round(hq_score, 2)
|
196 |
except Exception as e:
|
197 |
+
print(f"Error in Aesthetic Shadow: {e}")
|
198 |
+
results['aesthetic_shadow'] = None
|
199 |
+
|
200 |
+
# 2. Waifu Scorer
|
201 |
+
if self.waifu_scorer:
|
202 |
+
try:
|
203 |
+
waifu_score = self.waifu_scorer([image])[0]
|
204 |
+
results['waifu_scorer'] = round(waifu_score, 2)
|
205 |
+
except Exception as e:
|
206 |
+
print(f"Error in Waifu Scorer: {e}")
|
207 |
+
results['waifu_scorer'] = None
|
208 |
+
else:
|
209 |
+
results['waifu_scorer'] = None
|
210 |
+
|
211 |
+
# 3. Aesthetic Predictor V2.5
|
212 |
try:
|
213 |
+
v2_5_score = self.aesthetic_predictor_v2_5.inference(image)
|
214 |
+
results['aesthetic_predictor_v2_5'] = round(v2_5_score, 2)
|
215 |
except Exception as e:
|
216 |
+
print(f"Error in Aesthetic Predictor V2.5: {e}")
|
217 |
+
results['aesthetic_predictor_v2_5'] = None
|
218 |
+
|
219 |
+
# 4. Cafe Aesthetic
|
220 |
try:
|
221 |
+
cafe_aesthetic_result = self.cafe_aesthetic(image, top_k=2)
|
222 |
+
cafe_aesthetic_score = {d["label"]: round(d["score"], 2) for d in cafe_aesthetic_result}
|
223 |
+
results['cafe_aesthetic_good'] = cafe_aesthetic_score.get('good', 0)
|
224 |
+
results['cafe_aesthetic_bad'] = cafe_aesthetic_score.get('bad', 0)
|
225 |
+
|
226 |
+
cafe_style_result = self.cafe_style(image, top_k=1)
|
227 |
+
results['cafe_style'] = cafe_style_result[0]["label"]
|
228 |
+
|
229 |
+
cafe_waifu_result = self.cafe_waifu(image, top_k=1)
|
230 |
+
results['cafe_waifu'] = cafe_waifu_result[0]["label"]
|
231 |
except Exception as e:
|
232 |
+
print(f"Error in Cafe Aesthetic: {e}")
|
233 |
+
results['cafe_aesthetic_good'] = None
|
234 |
+
results['cafe_aesthetic_bad'] = None
|
235 |
+
results['cafe_style'] = None
|
236 |
+
results['cafe_waifu'] = None
|
237 |
+
|
238 |
+
# 5. Anime Aesthetic
|
239 |
try:
|
240 |
+
img_array = np.array(image)
|
241 |
+
anime_score = predict_anime_aesthetic(img_array, self.anime_aesthetic)
|
242 |
+
results['anime_aesthetic'] = round(anime_score, 2)
|
243 |
except Exception as e:
|
244 |
+
print(f"Error in Anime Aesthetic: {e}")
|
245 |
+
results['anime_aesthetic'] = None
|
246 |
+
|
247 |
+
return results
|
248 |
+
|
249 |
+
def process_images(self, image_files):
|
250 |
+
"""Process multiple image files and return results"""
|
251 |
+
results = []
|
252 |
+
|
253 |
+
for i, file_path in enumerate(image_files):
|
254 |
+
try:
|
255 |
+
# Open image
|
256 |
+
img = Image.open(file_path).convert("RGB")
|
257 |
+
|
258 |
+
# Get image evaluation results
|
259 |
+
eval_results = self.evaluate_image(img)
|
260 |
+
|
261 |
+
# Save a thumbnail for the results table
|
262 |
+
thumbnail_path = os.path.join(self.temp_dir, f"thumbnail_{i}.jpg")
|
263 |
+
img.thumbnail((200, 200))
|
264 |
+
img.save(thumbnail_path)
|
265 |
+
|
266 |
+
# Add file info and thumbnail path to results
|
267 |
+
result = {
|
268 |
+
'file_name': os.path.basename(file_path),
|
269 |
+
'thumbnail': thumbnail_path,
|
270 |
+
**eval_results
|
271 |
+
}
|
272 |
+
results.append(result)
|
273 |
+
|
274 |
+
except Exception as e:
|
275 |
+
print(f"Error processing {file_path}: {e}")
|
276 |
+
|
277 |
+
return results
|
278 |
+
|
279 |
+
def cleanup(self):
|
280 |
+
"""Clean up temporary files"""
|
281 |
+
if os.path.exists(self.temp_dir):
|
282 |
+
shutil.rmtree(self.temp_dir)
|
283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
+
# Create the Gradio interface
|
286 |
+
def create_interface():
|
287 |
+
evaluator = ImageEvaluationTool()
|
288 |
+
|
289 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
290 |
+
gr.Markdown("""
|
291 |
+
# Comprehensive Image Evaluation Tool
|
292 |
+
|
293 |
+
Upload images to evaluate them using multiple aesthetic and quality prediction models:
|
294 |
+
|
295 |
+
- **Aesthetic Shadow**: Evaluates high-quality vs low-quality images
|
296 |
+
- **Waifu Scorer**: Rates anime/illustration quality from 0-10
|
297 |
+
- **Aesthetic Predictor V2.5**: General aesthetic quality prediction
|
298 |
+
- **Cafe Aesthetic**: Multiple models for style and quality analysis
|
299 |
+
- **Anime Aesthetic**: Specific model for anime style images
|
300 |
+
|
301 |
+
Upload multiple images to get a comprehensive evaluation table.
|
302 |
+
""")
|
303 |
+
|
304 |
+
with gr.Row():
|
305 |
+
with gr.Column(scale=1):
|
306 |
+
input_images = gr.Files(label="Upload Images")
|
307 |
+
process_btn = gr.Button("Evaluate Images", variant="primary")
|
308 |
+
clear_btn = gr.Button("Clear Results")
|
309 |
+
|
310 |
+
with gr.Column(scale=2):
|
311 |
+
output_gallery = gr.Gallery(label="Evaluated Images", columns=5, object_fit="contain")
|
312 |
+
output_table = gr.Dataframe(label="Evaluation Results")
|
313 |
+
|
314 |
+
def process_images(files):
|
315 |
+
# Get file paths
|
316 |
+
file_paths = [f.name for f in files]
|
317 |
+
|
318 |
+
# Process images
|
319 |
+
results = evaluator.process_images(file_paths)
|
320 |
+
|
321 |
+
# Prepare gallery and table
|
322 |
+
gallery_images = [{"image": r["thumbnail"], "label": f"{r['file_name']}"} for r in results]
|
323 |
+
|
324 |
+
# Create DataFrame for the table
|
325 |
+
table_data = []
|
326 |
+
for r in results:
|
327 |
+
table_data.append({
|
328 |
+
"File Name": r["file_name"],
|
329 |
+
"Aesthetic Shadow": r["aesthetic_shadow"],
|
330 |
+
"Waifu Scorer": r["waifu_scorer"],
|
331 |
+
"Aesthetic V2.5": r["aesthetic_predictor_v2_5"],
|
332 |
+
"Cafe (Good)": r["cafe_aesthetic_good"],
|
333 |
+
"Cafe (Bad)": r["cafe_aesthetic_bad"],
|
334 |
+
"Cafe Style": r["cafe_style"],
|
335 |
+
"Cafe Waifu": r["cafe_waifu"],
|
336 |
+
"Anime Score": r["anime_aesthetic"]
|
337 |
+
})
|
338 |
+
|
339 |
+
df = pd.DataFrame(table_data)
|
340 |
+
return gallery_images, df
|
341 |
+
|
342 |
+
def clear_results():
|
343 |
+
return None, None
|
344 |
+
|
345 |
+
process_btn.click(process_images, inputs=[input_images], outputs=[output_gallery, output_table])
|
346 |
+
clear_btn.click(clear_results, inputs=[], outputs=[output_gallery, output_table])
|
347 |
+
|
348 |
+
# Cleanup when closing
|
349 |
+
demo.load(lambda: None, inputs=None, outputs=None)
|
350 |
+
|
351 |
+
gr.Markdown("""
|
352 |
+
### Notes
|
353 |
+
- The evaluation may take some time depending on the number and size of images
|
354 |
+
- For best results, use high-quality images
|
355 |
+
- Scores are on different scales depending on the model
|
356 |
+
""")
|
357 |
+
|
358 |
+
return demo
|
359 |
|
360 |
+
# Launch the interface
|
361 |
+
if __name__ == "__main__":
|
362 |
+
demo = create_interface()
|
363 |
+
demo.queue().launch()
|