Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +944 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,944 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
from PIL import Image
|
9 |
+
import torch
|
10 |
+
import cv2
|
11 |
+
|
12 |
+
# Create necessary directories
|
13 |
+
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
|
14 |
+
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
|
15 |
+
|
16 |
+
# Base Evaluator class
|
17 |
+
class BaseEvaluator:
|
18 |
+
"""
|
19 |
+
Base class for all image quality evaluators.
|
20 |
+
All evaluator implementations should inherit from this class.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, config=None):
|
24 |
+
"""
|
25 |
+
Initialize the evaluator with optional configuration.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
config (dict, optional): Configuration parameters for the evaluator.
|
29 |
+
"""
|
30 |
+
self.config = config or {}
|
31 |
+
|
32 |
+
def evaluate(self, image_path):
|
33 |
+
"""
|
34 |
+
Evaluate a single image and return scores.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
image_path (str): Path to the image file.
|
38 |
+
|
39 |
+
Returns:
|
40 |
+
dict: Dictionary containing evaluation scores.
|
41 |
+
"""
|
42 |
+
raise NotImplementedError("Subclasses must implement evaluate()")
|
43 |
+
|
44 |
+
def batch_evaluate(self, image_paths):
|
45 |
+
"""
|
46 |
+
Evaluate multiple images.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
image_paths (list): List of paths to image files.
|
50 |
+
|
51 |
+
Returns:
|
52 |
+
list: List of dictionaries containing evaluation scores for each image.
|
53 |
+
"""
|
54 |
+
return [self.evaluate(img_path) for img_path in image_paths]
|
55 |
+
|
56 |
+
def get_metadata(self):
|
57 |
+
"""
|
58 |
+
Return metadata about this evaluator.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
dict: Dictionary containing metadata about the evaluator.
|
62 |
+
"""
|
63 |
+
raise NotImplementedError("Subclasses must implement get_metadata()")
|
64 |
+
|
65 |
+
# Technical Evaluator
|
66 |
+
class TechnicalEvaluator(BaseEvaluator):
|
67 |
+
"""
|
68 |
+
Evaluator for basic technical image quality metrics.
|
69 |
+
Measures sharpness, noise, artifacts, and other technical aspects.
|
70 |
+
"""
|
71 |
+
|
72 |
+
def __init__(self, config=None):
|
73 |
+
super().__init__(config)
|
74 |
+
self.config.setdefault('laplacian_ksize', 3)
|
75 |
+
self.config.setdefault('blur_threshold', 100)
|
76 |
+
self.config.setdefault('noise_threshold', 0.05)
|
77 |
+
|
78 |
+
def evaluate(self, image_path):
|
79 |
+
"""
|
80 |
+
Evaluate technical aspects of an image.
|
81 |
+
|
82 |
+
Args:
|
83 |
+
image_path (str): Path to the image file.
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
dict: Dictionary containing technical evaluation scores.
|
87 |
+
"""
|
88 |
+
try:
|
89 |
+
# Load image
|
90 |
+
img = cv2.imread(image_path)
|
91 |
+
if img is None:
|
92 |
+
return {
|
93 |
+
'error': 'Failed to load image',
|
94 |
+
'overall_technical': 0.0
|
95 |
+
}
|
96 |
+
|
97 |
+
# Convert to grayscale for some calculations
|
98 |
+
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
99 |
+
|
100 |
+
# Calculate sharpness using Laplacian variance
|
101 |
+
laplacian = cv2.Laplacian(gray, cv2.CV_64F, ksize=self.config['laplacian_ksize'])
|
102 |
+
sharpness_score = np.var(laplacian) / 10000 # Normalize
|
103 |
+
sharpness_score = min(1.0, sharpness_score) # Cap at 1.0
|
104 |
+
|
105 |
+
# Calculate noise level
|
106 |
+
# Using a simple method based on standard deviation in smooth areas
|
107 |
+
blur = cv2.GaussianBlur(gray, (11, 11), 0)
|
108 |
+
diff = cv2.absdiff(gray, blur)
|
109 |
+
noise_level = np.std(diff) / 255.0
|
110 |
+
noise_score = 1.0 - min(1.0, noise_level / self.config['noise_threshold'])
|
111 |
+
|
112 |
+
# Check for compression artifacts
|
113 |
+
edges = cv2.Canny(gray, 100, 200)
|
114 |
+
artifact_score = 1.0 - (np.count_nonzero(edges) / (gray.shape[0] * gray.shape[1]))
|
115 |
+
artifact_score = max(0.0, min(1.0, artifact_score * 2)) # Adjust range
|
116 |
+
|
117 |
+
# Calculate color range and saturation
|
118 |
+
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
|
119 |
+
saturation = hsv[:, :, 1]
|
120 |
+
saturation_score = np.mean(saturation) / 255.0
|
121 |
+
|
122 |
+
# Calculate contrast
|
123 |
+
min_val, max_val, _, _ = cv2.minMaxLoc(gray)
|
124 |
+
contrast_score = (max_val - min_val) / 255.0
|
125 |
+
|
126 |
+
# Calculate overall technical score (weighted average)
|
127 |
+
overall_technical = (
|
128 |
+
0.3 * sharpness_score +
|
129 |
+
0.2 * noise_score +
|
130 |
+
0.2 * artifact_score +
|
131 |
+
0.15 * saturation_score +
|
132 |
+
0.15 * contrast_score
|
133 |
+
)
|
134 |
+
|
135 |
+
return {
|
136 |
+
'sharpness': float(sharpness_score),
|
137 |
+
'noise': float(noise_score),
|
138 |
+
'artifacts': float(artifact_score),
|
139 |
+
'saturation': float(saturation_score),
|
140 |
+
'contrast': float(contrast_score),
|
141 |
+
'overall_technical': float(overall_technical)
|
142 |
+
}
|
143 |
+
|
144 |
+
except Exception as e:
|
145 |
+
return {
|
146 |
+
'error': str(e),
|
147 |
+
'overall_technical': 0.0
|
148 |
+
}
|
149 |
+
|
150 |
+
def get_metadata(self):
|
151 |
+
"""
|
152 |
+
Return metadata about this evaluator.
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
dict: Dictionary containing metadata about the evaluator.
|
156 |
+
"""
|
157 |
+
return {
|
158 |
+
'id': 'technical',
|
159 |
+
'name': 'Technical Metrics',
|
160 |
+
'description': 'Evaluates basic technical aspects of image quality including sharpness, noise, artifacts, saturation, and contrast.',
|
161 |
+
'version': '1.0',
|
162 |
+
'metrics': [
|
163 |
+
{'id': 'sharpness', 'name': 'Sharpness', 'description': 'Measures image clarity and detail'},
|
164 |
+
{'id': 'noise', 'name': 'Noise', 'description': 'Measures absence of unwanted variations'},
|
165 |
+
{'id': 'artifacts', 'name': 'Artifacts', 'description': 'Measures absence of compression artifacts'},
|
166 |
+
{'id': 'saturation', 'name': 'Saturation', 'description': 'Measures color intensity'},
|
167 |
+
{'id': 'contrast', 'name': 'Contrast', 'description': 'Measures difference between light and dark areas'},
|
168 |
+
{'id': 'overall_technical', 'name': 'Overall Technical', 'description': 'Combined technical quality score'}
|
169 |
+
]
|
170 |
+
}
|
171 |
+
|
172 |
+
# Aesthetic Evaluator
|
173 |
+
class AestheticEvaluator(BaseEvaluator):
|
174 |
+
"""
|
175 |
+
Evaluator for aesthetic image quality.
|
176 |
+
Uses a simplified aesthetic assessment model.
|
177 |
+
"""
|
178 |
+
|
179 |
+
def __init__(self, config=None):
|
180 |
+
super().__init__(config)
|
181 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
182 |
+
|
183 |
+
def evaluate(self, image_path):
|
184 |
+
"""
|
185 |
+
Evaluate aesthetic aspects of an image.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
image_path (str): Path to the image file.
|
189 |
+
|
190 |
+
Returns:
|
191 |
+
dict: Dictionary containing aesthetic evaluation scores.
|
192 |
+
"""
|
193 |
+
try:
|
194 |
+
# Load and preprocess image
|
195 |
+
img = Image.open(image_path).convert('RGB')
|
196 |
+
|
197 |
+
# Convert to numpy array for calculations
|
198 |
+
img_np = np.array(img)
|
199 |
+
|
200 |
+
# Calculate color harmony using standard deviation of colors
|
201 |
+
r, g, b = img_np[:,:,0], img_np[:,:,1], img_np[:,:,2]
|
202 |
+
color_std = (np.std(r) + np.std(g) + np.std(b)) / 3
|
203 |
+
color_harmony = min(1.0, color_std / 80.0) # Normalize
|
204 |
+
|
205 |
+
# Calculate composition score using rule of thirds
|
206 |
+
h, w = img_np.shape[:2]
|
207 |
+
third_h, third_w = h // 3, w // 3
|
208 |
+
|
209 |
+
# Create a rule of thirds grid mask
|
210 |
+
grid_mask = np.zeros((h, w))
|
211 |
+
for i in range(1, 3):
|
212 |
+
grid_mask[third_h * i - 5:third_h * i + 5, :] = 1
|
213 |
+
grid_mask[:, third_w * i - 5:third_w * i + 5] = 1
|
214 |
+
|
215 |
+
# Convert to grayscale for edge detection
|
216 |
+
gray = np.mean(img_np, axis=2).astype(np.uint8)
|
217 |
+
|
218 |
+
# Simple edge detection
|
219 |
+
edges = np.abs(np.diff(gray, axis=0, prepend=0)) + np.abs(np.diff(gray, axis=1, prepend=0))
|
220 |
+
edges = edges > 30 # Threshold
|
221 |
+
|
222 |
+
# Calculate how many edges fall on the rule of thirds lines
|
223 |
+
thirds_alignment = np.sum(edges * grid_mask) / max(1, np.sum(edges))
|
224 |
+
composition_score = min(1.0, thirds_alignment * 3) # Scale up for better distribution
|
225 |
+
|
226 |
+
# Calculate visual interest using entropy
|
227 |
+
hist_r = np.histogram(r, bins=256, range=(0, 256))[0] / (h * w)
|
228 |
+
hist_g = np.histogram(g, bins=256, range=(0, 256))[0] / (h * w)
|
229 |
+
hist_b = np.histogram(b, bins=256, range=(0, 256))[0] / (h * w)
|
230 |
+
|
231 |
+
entropy_r = -np.sum(hist_r[hist_r > 0] * np.log2(hist_r[hist_r > 0]))
|
232 |
+
entropy_g = -np.sum(hist_g[hist_g > 0] * np.log2(hist_g[hist_g > 0]))
|
233 |
+
entropy_b = -np.sum(hist_b[hist_b > 0] * np.log2(hist_b[hist_b > 0]))
|
234 |
+
|
235 |
+
entropy = (entropy_r + entropy_g + entropy_b) / 3
|
236 |
+
visual_interest = min(1.0, entropy / 7.5) # Normalize
|
237 |
+
|
238 |
+
# Calculate overall aesthetic score (weighted average)
|
239 |
+
overall_aesthetic = (
|
240 |
+
0.4 * color_harmony +
|
241 |
+
0.3 * composition_score +
|
242 |
+
0.3 * visual_interest
|
243 |
+
)
|
244 |
+
|
245 |
+
return {
|
246 |
+
'color_harmony': float(color_harmony),
|
247 |
+
'composition': float(composition_score),
|
248 |
+
'visual_interest': float(visual_interest),
|
249 |
+
'overall_aesthetic': float(overall_aesthetic)
|
250 |
+
}
|
251 |
+
|
252 |
+
except Exception as e:
|
253 |
+
return {
|
254 |
+
'error': str(e),
|
255 |
+
'overall_aesthetic': 0.0
|
256 |
+
}
|
257 |
+
|
258 |
+
def get_metadata(self):
|
259 |
+
"""
|
260 |
+
Return metadata about this evaluator.
|
261 |
+
|
262 |
+
Returns:
|
263 |
+
dict: Dictionary containing metadata about the evaluator.
|
264 |
+
"""
|
265 |
+
return {
|
266 |
+
'id': 'aesthetic',
|
267 |
+
'name': 'Aesthetic Assessment',
|
268 |
+
'description': 'Evaluates aesthetic qualities of images including color harmony, composition, and visual interest.',
|
269 |
+
'version': '1.0',
|
270 |
+
'metrics': [
|
271 |
+
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
|
272 |
+
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
|
273 |
+
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
|
274 |
+
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
|
275 |
+
]
|
276 |
+
}
|
277 |
+
|
278 |
+
# Anime Style Evaluator
|
279 |
+
class AnimeStyleEvaluator(BaseEvaluator):
|
280 |
+
"""
|
281 |
+
Specialized evaluator for anime-style images.
|
282 |
+
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def __init__(self, config=None):
|
286 |
+
super().__init__(config)
|
287 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
288 |
+
|
289 |
+
def evaluate(self, image_path):
|
290 |
+
"""
|
291 |
+
Evaluate anime-specific aspects of an image.
|
292 |
+
|
293 |
+
Args:
|
294 |
+
image_path (str): Path to the image file.
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
dict: Dictionary containing anime-style evaluation scores.
|
298 |
+
"""
|
299 |
+
try:
|
300 |
+
# Load image
|
301 |
+
img = Image.open(image_path).convert('RGB')
|
302 |
+
img_np = np.array(img)
|
303 |
+
|
304 |
+
# Line quality assessment
|
305 |
+
gray = np.mean(img_np, axis=2).astype(np.uint8)
|
306 |
+
|
307 |
+
# Calculate gradients for edge detection
|
308 |
+
gx = np.abs(np.diff(gray, axis=1, prepend=0))
|
309 |
+
gy = np.abs(np.diff(gray, axis=0, prepend=0))
|
310 |
+
|
311 |
+
# Combine gradients
|
312 |
+
edges = np.maximum(gx, gy)
|
313 |
+
|
314 |
+
# Strong edges are characteristic of anime
|
315 |
+
strong_edges = edges > 50
|
316 |
+
edge_ratio = np.sum(strong_edges) / (gray.shape[0] * gray.shape[1])
|
317 |
+
|
318 |
+
# Line quality score - anime typically has a higher proportion of strong edges
|
319 |
+
line_quality = min(1.0, edge_ratio * 20) # Scale appropriately
|
320 |
+
|
321 |
+
# Color palette assessment
|
322 |
+
pixels = img_np.reshape(-1, 3)
|
323 |
+
sample_size = min(10000, pixels.shape[0])
|
324 |
+
indices = np.random.choice(pixels.shape[0], sample_size, replace=False)
|
325 |
+
sampled_pixels = pixels[indices]
|
326 |
+
|
327 |
+
# Calculate color diversity (simplified)
|
328 |
+
color_std = np.std(sampled_pixels, axis=0)
|
329 |
+
color_diversity = np.mean(color_std) / 128.0 # Normalize
|
330 |
+
|
331 |
+
# Anime often has a good balance of diversity but not excessive
|
332 |
+
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
|
333 |
+
|
334 |
+
# Placeholder for character quality
|
335 |
+
character_quality = 0.85 # Default value for prototype
|
336 |
+
|
337 |
+
# Style consistency assessment
|
338 |
+
hsv = np.array(img.convert('HSV'))
|
339 |
+
saturation = hsv[:,:,1]
|
340 |
+
value = hsv[:,:,2]
|
341 |
+
|
342 |
+
# Calculate statistics
|
343 |
+
sat_mean = np.mean(saturation) / 255.0
|
344 |
+
val_mean = np.mean(value) / 255.0
|
345 |
+
|
346 |
+
# Anime often has higher saturation and controlled brightness
|
347 |
+
sat_score = 1.0 - abs(sat_mean - 0.7) * 2 # Ideal around 0.7
|
348 |
+
val_score = 1.0 - abs(val_mean - 0.6) * 2 # Ideal around 0.6
|
349 |
+
|
350 |
+
style_consistency = (sat_score + val_score) / 2
|
351 |
+
|
352 |
+
# Overall anime score (weighted average)
|
353 |
+
overall_anime = (
|
354 |
+
0.3 * line_quality +
|
355 |
+
0.2 * color_score +
|
356 |
+
0.25 * character_quality +
|
357 |
+
0.25 * style_consistency
|
358 |
+
)
|
359 |
+
|
360 |
+
return {
|
361 |
+
'line_quality': float(line_quality),
|
362 |
+
'color_palette': float(color_score),
|
363 |
+
'character_quality': float(character_quality),
|
364 |
+
'style_consistency': float(style_consistency),
|
365 |
+
'overall_anime': float(overall_anime)
|
366 |
+
}
|
367 |
+
|
368 |
+
except Exception as e:
|
369 |
+
return {
|
370 |
+
'error': str(e),
|
371 |
+
'overall_anime': 0.0
|
372 |
+
}
|
373 |
+
|
374 |
+
def get_metadata(self):
|
375 |
+
"""
|
376 |
+
Return metadata about this evaluator.
|
377 |
+
|
378 |
+
Returns:
|
379 |
+
dict: Dictionary containing metadata about the evaluator.
|
380 |
+
"""
|
381 |
+
return {
|
382 |
+
'id': 'anime_specialized',
|
383 |
+
'name': 'Anime Style Evaluator',
|
384 |
+
'description': 'Specialized evaluator for anime-style images, focusing on line quality, color palette, character design, and style consistency.',
|
385 |
+
'version': '1.0',
|
386 |
+
'metrics': [
|
387 |
+
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
|
388 |
+
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
|
389 |
+
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering'},
|
390 |
+
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
|
391 |
+
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
|
392 |
+
]
|
393 |
+
}
|
394 |
+
|
395 |
+
# Evaluator Manager
|
396 |
+
class EvaluatorManager:
|
397 |
+
"""
|
398 |
+
Manager class for handling multiple evaluators.
|
399 |
+
Provides a unified interface for evaluating images with different metrics.
|
400 |
+
"""
|
401 |
+
|
402 |
+
def __init__(self):
|
403 |
+
"""Initialize the evaluator manager with available evaluators."""
|
404 |
+
self.evaluators = {}
|
405 |
+
self._register_default_evaluators()
|
406 |
+
|
407 |
+
def _register_default_evaluators(self):
|
408 |
+
"""Register the default set of evaluators."""
|
409 |
+
self.register_evaluator(TechnicalEvaluator())
|
410 |
+
self.register_evaluator(AestheticEvaluator())
|
411 |
+
self.register_evaluator(AnimeStyleEvaluator())
|
412 |
+
|
413 |
+
def register_evaluator(self, evaluator):
|
414 |
+
"""
|
415 |
+
Register a new evaluator.
|
416 |
+
|
417 |
+
Args:
|
418 |
+
evaluator (BaseEvaluator): The evaluator to register.
|
419 |
+
"""
|
420 |
+
if not isinstance(evaluator, BaseEvaluator):
|
421 |
+
raise TypeError("Evaluator must be an instance of BaseEvaluator")
|
422 |
+
|
423 |
+
metadata = evaluator.get_metadata()
|
424 |
+
self.evaluators[metadata['id']] = evaluator
|
425 |
+
|
426 |
+
def get_available_evaluators(self):
|
427 |
+
"""
|
428 |
+
Get a list of available evaluators.
|
429 |
+
|
430 |
+
Returns:
|
431 |
+
list: List of evaluator metadata.
|
432 |
+
"""
|
433 |
+
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
|
434 |
+
|
435 |
+
def evaluate_image(self, image_path, evaluator_ids=None):
|
436 |
+
"""
|
437 |
+
Evaluate an image using specified evaluators.
|
438 |
+
|
439 |
+
Args:
|
440 |
+
image_path (str): Path to the image file.
|
441 |
+
evaluator_ids (list, optional): List of evaluator IDs to use.
|
442 |
+
If None, all available evaluators will be used.
|
443 |
+
|
444 |
+
Returns:
|
445 |
+
dict: Dictionary containing evaluation results from each evaluator.
|
446 |
+
"""
|
447 |
+
if not os.path.exists(image_path):
|
448 |
+
return {'error': f'Image file not found: {image_path}'}
|
449 |
+
|
450 |
+
if evaluator_ids is None:
|
451 |
+
evaluator_ids = list(self.evaluators.keys())
|
452 |
+
|
453 |
+
results = {}
|
454 |
+
for evaluator_id in evaluator_ids:
|
455 |
+
if evaluator_id in self.evaluators:
|
456 |
+
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(image_path)
|
457 |
+
else:
|
458 |
+
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
|
459 |
+
|
460 |
+
return results
|
461 |
+
|
462 |
+
def batch_evaluate_images(self, image_paths, evaluator_ids=None):
|
463 |
+
"""
|
464 |
+
Evaluate multiple images using specified evaluators.
|
465 |
+
|
466 |
+
Args:
|
467 |
+
image_paths (list): List of paths to image files.
|
468 |
+
evaluator_ids (list, optional): List of evaluator IDs to use.
|
469 |
+
If None, all available evaluators will be used.
|
470 |
+
|
471 |
+
Returns:
|
472 |
+
list: List of dictionaries containing evaluation results for each image.
|
473 |
+
"""
|
474 |
+
return [self.evaluate_image(path, evaluator_ids) for path in image_paths]
|
475 |
+
|
476 |
+
def compare_models(self, model_results):
|
477 |
+
"""
|
478 |
+
Compare different models based on evaluation results.
|
479 |
+
|
480 |
+
Args:
|
481 |
+
model_results (dict): Dictionary mapping model names to their evaluation results.
|
482 |
+
|
483 |
+
Returns:
|
484 |
+
dict: Comparison results including rankings and best model.
|
485 |
+
"""
|
486 |
+
if not model_results:
|
487 |
+
return {'error': 'No model results provided for comparison'}
|
488 |
+
|
489 |
+
# Calculate average scores for each model across all images and evaluators
|
490 |
+
model_scores = {}
|
491 |
+
|
492 |
+
for model_name, image_results in model_results.items():
|
493 |
+
model_scores[model_name] = {
|
494 |
+
'technical': 0.0,
|
495 |
+
'aesthetic': 0.0,
|
496 |
+
'anime_specialized': 0.0,
|
497 |
+
'overall': 0.0
|
498 |
+
}
|
499 |
+
|
500 |
+
image_count = len(image_results)
|
501 |
+
if image_count == 0:
|
502 |
+
continue
|
503 |
+
|
504 |
+
# Sum up scores across all images
|
505 |
+
for image_id, evaluations in image_results.items():
|
506 |
+
if 'technical' in evaluations and 'overall_technical' in evaluations['technical']:
|
507 |
+
model_scores[model_name]['technical'] += evaluations['technical']['overall_technical']
|
508 |
+
|
509 |
+
if 'aesthetic' in evaluations and 'overall_aesthetic' in evaluations['aesthetic']:
|
510 |
+
model_scores[model_name]['aesthetic'] += evaluations['aesthetic']['overall_aesthetic']
|
511 |
+
|
512 |
+
if 'anime_specialized' in evaluations and 'overall_anime' in evaluations['anime_specialized']:
|
513 |
+
model_scores[model_name]['anime_specialized'] += evaluations['anime_specialized']['overall_anime']
|
514 |
+
|
515 |
+
# Calculate averages
|
516 |
+
model_scores[model_name]['technical'] /= image_count
|
517 |
+
model_scores[model_name]['aesthetic'] /= image_count
|
518 |
+
model_scores[model_name]['anime_specialized'] /= image_count
|
519 |
+
|
520 |
+
# Calculate overall score (weighted average of all metrics)
|
521 |
+
model_scores[model_name]['overall'] = (
|
522 |
+
0.3 * model_scores[model_name]['technical'] +
|
523 |
+
0.4 * model_scores[model_name]['aesthetic'] +
|
524 |
+
0.3 * model_scores[model_name]['anime_specialized']
|
525 |
+
)
|
526 |
+
|
527 |
+
# Rank models by overall score
|
528 |
+
rankings = sorted(
|
529 |
+
[(model, scores['overall']) for model, scores in model_scores.items()],
|
530 |
+
key=lambda x: x[1],
|
531 |
+
reverse=True
|
532 |
+
)
|
533 |
+
|
534 |
+
# Format rankings
|
535 |
+
formatted_rankings = [
|
536 |
+
{'rank': i+1, 'model': model, 'score': score}
|
537 |
+
for i, (model, score) in enumerate(rankings)
|
538 |
+
]
|
539 |
+
|
540 |
+
# Determine best model
|
541 |
+
best_model = rankings[0][0] if rankings else None
|
542 |
+
|
543 |
+
# Format comparison metrics
|
544 |
+
comparison_metrics = {
|
545 |
+
'technical': {model: scores['technical'] for model, scores in model_scores.items()},
|
546 |
+
'aesthetic': {model: scores['aesthetic'] for model, scores in model_scores.items()},
|
547 |
+
'anime_specialized': {model: scores['anime_specialized'] for model, scores in model_scores.items()},
|
548 |
+
'overall': {model: scores['overall'] for model, scores in model_scores.items()}
|
549 |
+
}
|
550 |
+
|
551 |
+
return {
|
552 |
+
'best_model': best_model,
|
553 |
+
'rankings': formatted_rankings,
|
554 |
+
'comparison_metrics': comparison_metrics
|
555 |
+
}
|
556 |
+
|
557 |
+
# Initialize evaluator manager
|
558 |
+
evaluator_manager = EvaluatorManager()
|
559 |
+
|
560 |
+
# Global variables to store uploaded images and results
|
561 |
+
uploaded_images = {}
|
562 |
+
evaluation_results = {}
|
563 |
+
|
564 |
+
def evaluate_images(images, model_name, selected_evaluators):
|
565 |
+
"""
|
566 |
+
Evaluate uploaded images using selected evaluators.
|
567 |
+
|
568 |
+
Args:
|
569 |
+
images (list): List of uploaded image files
|
570 |
+
model_name (str): Name of the model that generated these images
|
571 |
+
selected_evaluators (list): List of evaluator IDs to use
|
572 |
+
|
573 |
+
Returns:
|
574 |
+
str: Status message
|
575 |
+
"""
|
576 |
+
global uploaded_images, evaluation_results
|
577 |
+
|
578 |
+
if not images:
|
579 |
+
return "No images uploaded."
|
580 |
+
|
581 |
+
if not model_name:
|
582 |
+
model_name = "unknown_model"
|
583 |
+
|
584 |
+
# Save uploaded images
|
585 |
+
if model_name not in uploaded_images:
|
586 |
+
uploaded_images[model_name] = []
|
587 |
+
|
588 |
+
image_paths = []
|
589 |
+
for img in images:
|
590 |
+
# Save image to temporary file
|
591 |
+
img_path = f"/tmp/image_evaluator_uploads/{model_name}_{len(uploaded_images[model_name])}.png"
|
592 |
+
os.makedirs(os.path.dirname(img_path), exist_ok=True)
|
593 |
+
Image.open(img).save(img_path)
|
594 |
+
|
595 |
+
# Add to uploaded images
|
596 |
+
uploaded_images[model_name].append({
|
597 |
+
'path': img_path,
|
598 |
+
'id': f"{model_name}_{len(uploaded_images[model_name])}"
|
599 |
+
})
|
600 |
+
|
601 |
+
image_paths.append(img_path)
|
602 |
+
|
603 |
+
# Evaluate images
|
604 |
+
if not selected_evaluators:
|
605 |
+
selected_evaluators = ['technical', 'aesthetic', 'anime_specialized']
|
606 |
+
|
607 |
+
results = {}
|
608 |
+
for i, img_path in enumerate(image_paths):
|
609 |
+
img_id = uploaded_images[model_name][i]['id']
|
610 |
+
results[img_id] = evaluator_manager.evaluate_image(img_path, selected_evaluators)
|
611 |
+
|
612 |
+
# Store results
|
613 |
+
if model_name not in evaluation_results:
|
614 |
+
evaluation_results[model_name] = {}
|
615 |
+
|
616 |
+
evaluation_results[model_name].update(results)
|
617 |
+
|
618 |
+
return f"Evaluated {len(images)} images for model '{model_name}'."
|
619 |
+
|
620 |
+
def compare_models():
|
621 |
+
"""
|
622 |
+
Compare models based on evaluation results.
|
623 |
+
|
624 |
+
Returns:
|
625 |
+
tuple: (comparison table HTML, overall chart, radar chart)
|
626 |
+
"""
|
627 |
+
global evaluation_results
|
628 |
+
|
629 |
+
if not evaluation_results or len(evaluation_results) < 2:
|
630 |
+
return "Need at least two models with evaluated images for comparison.", None, None
|
631 |
+
|
632 |
+
# Compare models
|
633 |
+
comparison = evaluator_manager.compare_models(evaluation_results)
|
634 |
+
|
635 |
+
# Create comparison table
|
636 |
+
models = list(evaluation_results.keys())
|
637 |
+
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
|
638 |
+
|
639 |
+
data = []
|
640 |
+
for model in models:
|
641 |
+
row = {'Model': model}
|
642 |
+
for metric in metrics:
|
643 |
+
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
|
644 |
+
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
|
645 |
+
else:
|
646 |
+
row[metric.capitalize()] = 0.0
|
647 |
+
data.append(row)
|
648 |
+
|
649 |
+
df = pd.DataFrame(data)
|
650 |
+
|
651 |
+
# Add ranking information
|
652 |
+
for rank_info in comparison['rankings']:
|
653 |
+
if rank_info['model'] in df['Model'].values:
|
654 |
+
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
|
655 |
+
|
656 |
+
# Sort by rank
|
657 |
+
df = df.sort_values('Rank')
|
658 |
+
|
659 |
+
# Create overall comparison chart
|
660 |
+
plt.figure(figsize=(10, 6))
|
661 |
+
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
|
662 |
+
bars = plt.bar(models, overall_scores, color='skyblue')
|
663 |
+
|
664 |
+
# Add value labels on top of bars
|
665 |
+
for bar in bars:
|
666 |
+
height = bar.get_height()
|
667 |
+
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01,
|
668 |
+
f'{height:.2f}', ha='center', va='bottom')
|
669 |
+
|
670 |
+
plt.title('Overall Quality Scores by Model')
|
671 |
+
plt.xlabel('Model')
|
672 |
+
plt.ylabel('Score')
|
673 |
+
plt.ylim(0, 1.1)
|
674 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
675 |
+
|
676 |
+
# Save the chart
|
677 |
+
overall_chart_path = "/tmp/image_evaluator_results/overall_comparison.png"
|
678 |
+
os.makedirs(os.path.dirname(overall_chart_path), exist_ok=True)
|
679 |
+
plt.savefig(overall_chart_path)
|
680 |
+
plt.close()
|
681 |
+
|
682 |
+
# Create radar chart
|
683 |
+
categories = [m.capitalize() for m in metrics[:-1]] # Exclude 'overall'
|
684 |
+
N = len(categories)
|
685 |
+
|
686 |
+
# Create angles for each metric
|
687 |
+
angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
688 |
+
angles += angles[:1] # Close the loop
|
689 |
+
|
690 |
+
# Create radar chart
|
691 |
+
plt.figure(figsize=(10, 10))
|
692 |
+
ax = plt.subplot(111, polar=True)
|
693 |
+
|
694 |
+
# Add lines for each model
|
695 |
+
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
|
696 |
+
|
697 |
+
for i, model in enumerate(models):
|
698 |
+
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
|
699 |
+
values += values[:1] # Close the loop
|
700 |
+
|
701 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
|
702 |
+
ax.fill(angles, values, alpha=0.1, color=colors[i])
|
703 |
+
|
704 |
+
# Set category labels
|
705 |
+
plt.xticks(angles[:-1], categories)
|
706 |
+
|
707 |
+
# Set y-axis limits
|
708 |
+
ax.set_ylim(0, 1)
|
709 |
+
|
710 |
+
# Add legend
|
711 |
+
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
712 |
+
|
713 |
+
plt.title('Detailed Metrics Comparison by Model')
|
714 |
+
|
715 |
+
# Save the chart
|
716 |
+
radar_chart_path = "/tmp/image_evaluator_results/radar_comparison.png"
|
717 |
+
plt.savefig(radar_chart_path)
|
718 |
+
plt.close()
|
719 |
+
|
720 |
+
# Create result message
|
721 |
+
result_message = f"Best model: {comparison['best_model']}\n\nModel rankings:\n"
|
722 |
+
for rank in comparison['rankings']:
|
723 |
+
result_message += f"{rank['rank']}. {rank['model']} (score: {rank['score']:.2f})\n"
|
724 |
+
|
725 |
+
return result_message, overall_chart_path, radar_chart_path
|
726 |
+
|
727 |
+
def export_results(format_type):
|
728 |
+
"""
|
729 |
+
Export evaluation results to file.
|
730 |
+
|
731 |
+
Args:
|
732 |
+
format_type (str): Export format ('csv', 'json', or 'html')
|
733 |
+
|
734 |
+
Returns:
|
735 |
+
str: Path to exported file
|
736 |
+
"""
|
737 |
+
global evaluation_results
|
738 |
+
|
739 |
+
if not evaluation_results:
|
740 |
+
return "No evaluation results to export."
|
741 |
+
|
742 |
+
# Create output directory
|
743 |
+
output_dir = "/tmp/image_evaluator_results"
|
744 |
+
os.makedirs(output_dir, exist_ok=True)
|
745 |
+
|
746 |
+
# Compare models if multiple models are available
|
747 |
+
if len(evaluation_results) >= 2:
|
748 |
+
comparison = evaluator_manager.compare_models(evaluation_results)
|
749 |
+
else:
|
750 |
+
comparison = None
|
751 |
+
|
752 |
+
# Create DataFrame for the results
|
753 |
+
models = list(evaluation_results.keys())
|
754 |
+
metrics = ['technical', 'aesthetic', 'anime_specialized', 'overall']
|
755 |
+
|
756 |
+
if comparison:
|
757 |
+
data = []
|
758 |
+
for model in models:
|
759 |
+
row = {'Model': model}
|
760 |
+
for metric in metrics:
|
761 |
+
if metric in comparison['comparison_metrics'] and model in comparison['comparison_metrics'][metric]:
|
762 |
+
row[metric.capitalize()] = comparison['comparison_metrics'][metric][model]
|
763 |
+
else:
|
764 |
+
row[metric.capitalize()] = 0.0
|
765 |
+
data.append(row)
|
766 |
+
|
767 |
+
df = pd.DataFrame(data)
|
768 |
+
|
769 |
+
# Add ranking information
|
770 |
+
for rank_info in comparison['rankings']:
|
771 |
+
if rank_info['model'] in df['Model'].values:
|
772 |
+
df.loc[df['Model'] == rank_info['model'], 'Rank'] = rank_info['rank']
|
773 |
+
|
774 |
+
# Sort by rank
|
775 |
+
df = df.sort_values('Rank')
|
776 |
+
else:
|
777 |
+
# Single model, create detailed results
|
778 |
+
model = models[0]
|
779 |
+
data = []
|
780 |
+
|
781 |
+
for img_id, results in evaluation_results[model].items():
|
782 |
+
row = {'Image': img_id}
|
783 |
+
|
784 |
+
for evaluator_id, evaluator_results in results.items():
|
785 |
+
for metric, value in evaluator_results.items():
|
786 |
+
row[f"{evaluator_id}_{metric}"] = value
|
787 |
+
|
788 |
+
data.append(row)
|
789 |
+
|
790 |
+
df = pd.DataFrame(data)
|
791 |
+
|
792 |
+
# Export based on format
|
793 |
+
if format_type == 'csv':
|
794 |
+
output_path = os.path.join(output_dir, 'evaluation_results.csv')
|
795 |
+
df.to_csv(output_path, index=False)
|
796 |
+
elif format_type == 'json':
|
797 |
+
output_path = os.path.join(output_dir, 'evaluation_results.json')
|
798 |
+
|
799 |
+
if comparison:
|
800 |
+
export_data = {
|
801 |
+
'comparison': comparison,
|
802 |
+
'results': evaluation_results
|
803 |
+
}
|
804 |
+
else:
|
805 |
+
export_data = evaluation_results
|
806 |
+
|
807 |
+
with open(output_path, 'w') as f:
|
808 |
+
json.dump(export_data, f, indent=2)
|
809 |
+
elif format_type == 'html':
|
810 |
+
output_path = os.path.join(output_dir, 'evaluation_results.html')
|
811 |
+
df.to_html(output_path, index=False)
|
812 |
+
else:
|
813 |
+
return f"Unsupported format: {format_type}"
|
814 |
+
|
815 |
+
return output_path
|
816 |
+
|
817 |
+
def reset_data():
|
818 |
+
"""Reset all uploaded images and evaluation results."""
|
819 |
+
global uploaded_images, evaluation_results
|
820 |
+
uploaded_images = {}
|
821 |
+
evaluation_results = {}
|
822 |
+
return "All data has been reset."
|
823 |
+
|
824 |
+
def create_interface():
|
825 |
+
"""Create Gradio interface."""
|
826 |
+
# Get available evaluators
|
827 |
+
available_evaluators = evaluator_manager.get_available_evaluators()
|
828 |
+
evaluator_choices = [e['id'] for e in available_evaluators]
|
829 |
+
|
830 |
+
with gr.Blocks(title="Image Evaluator") as interface:
|
831 |
+
gr.Markdown("# Image Evaluator")
|
832 |
+
gr.Markdown("Tool for evaluating and comparing images generated by different AI models")
|
833 |
+
|
834 |
+
with gr.Tab("Upload & Evaluate"):
|
835 |
+
with gr.Row():
|
836 |
+
with gr.Column():
|
837 |
+
images_input = gr.File(file_count="multiple", label="Upload Images")
|
838 |
+
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
|
839 |
+
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
|
840 |
+
evaluate_button = gr.Button("Evaluate Images")
|
841 |
+
|
842 |
+
with gr.Column():
|
843 |
+
evaluation_output = gr.Textbox(label="Evaluation Status")
|
844 |
+
|
845 |
+
evaluate_button.click(
|
846 |
+
evaluate_images,
|
847 |
+
inputs=[images_input, model_name_input, evaluator_select],
|
848 |
+
outputs=evaluation_output
|
849 |
+
)
|
850 |
+
|
851 |
+
with gr.Tab("Compare Models"):
|
852 |
+
with gr.Row():
|
853 |
+
compare_button = gr.Button("Compare Models")
|
854 |
+
|
855 |
+
with gr.Row():
|
856 |
+
with gr.Column():
|
857 |
+
comparison_output = gr.Textbox(label="Comparison Results")
|
858 |
+
|
859 |
+
with gr.Column():
|
860 |
+
overall_chart = gr.Image(label="Overall Scores")
|
861 |
+
radar_chart = gr.Image(label="Detailed Metrics")
|
862 |
+
|
863 |
+
compare_button.click(
|
864 |
+
compare_models,
|
865 |
+
inputs=[],
|
866 |
+
outputs=[comparison_output, overall_chart, radar_chart]
|
867 |
+
)
|
868 |
+
|
869 |
+
with gr.Tab("Export Results"):
|
870 |
+
with gr.Row():
|
871 |
+
format_select = gr.Radio(choices=["csv", "json", "html"], label="Export Format", value="csv")
|
872 |
+
export_button = gr.Button("Export Results")
|
873 |
+
|
874 |
+
with gr.Row():
|
875 |
+
export_output = gr.Textbox(label="Export Status")
|
876 |
+
|
877 |
+
export_button.click(
|
878 |
+
export_results,
|
879 |
+
inputs=[format_select],
|
880 |
+
outputs=export_output
|
881 |
+
)
|
882 |
+
|
883 |
+
with gr.Tab("Help"):
|
884 |
+
gr.Markdown("""
|
885 |
+
## How to Use Image Evaluator
|
886 |
+
|
887 |
+
### Step 1: Upload Images
|
888 |
+
- Go to the "Upload & Evaluate" tab
|
889 |
+
- Upload images for a specific model
|
890 |
+
- Enter the model name
|
891 |
+
- Select which evaluators to use
|
892 |
+
- Click "Evaluate Images"
|
893 |
+
- Repeat for each model you want to compare
|
894 |
+
|
895 |
+
### Step 2: Compare Models
|
896 |
+
- Go to the "Compare Models" tab
|
897 |
+
- Click "Compare Models" to see results
|
898 |
+
- The best model will be highlighted
|
899 |
+
- View charts for visual comparison
|
900 |
+
|
901 |
+
### Step 3: Export Results
|
902 |
+
- Go to the "Export Results" tab
|
903 |
+
- Select export format (CSV, JSON, or HTML)
|
904 |
+
- Click "Export Results"
|
905 |
+
- Download the exported file
|
906 |
+
|
907 |
+
### Available Metrics
|
908 |
+
|
909 |
+
#### Technical Metrics
|
910 |
+
- Sharpness: Measures image clarity and detail
|
911 |
+
- Noise: Measures absence of unwanted variations
|
912 |
+
- Artifacts: Measures absence of compression artifacts
|
913 |
+
- Saturation: Measures color intensity
|
914 |
+
- Contrast: Measures difference between light and dark areas
|
915 |
+
|
916 |
+
#### Aesthetic Metrics
|
917 |
+
- Color Harmony: Measures how well colors work together
|
918 |
+
- Composition: Measures adherence to compositional principles
|
919 |
+
- Visual Interest: Measures how visually engaging the image is
|
920 |
+
|
921 |
+
#### Anime-Specific Metrics
|
922 |
+
- Line Quality: Measures clarity and quality of line work
|
923 |
+
- Color Palette: Evaluates color choices for anime style
|
924 |
+
- Character Quality: Assesses character design and rendering
|
925 |
+
- Style Consistency: Measures adherence to anime style conventions
|
926 |
+
""")
|
927 |
+
|
928 |
+
with gr.Row():
|
929 |
+
reset_button = gr.Button("Reset All Data")
|
930 |
+
reset_output = gr.Textbox(label="Reset Status")
|
931 |
+
|
932 |
+
reset_button.click(
|
933 |
+
reset_data,
|
934 |
+
inputs=[],
|
935 |
+
outputs=reset_output
|
936 |
+
)
|
937 |
+
|
938 |
+
return interface
|
939 |
+
|
940 |
+
# Create and launch the interface
|
941 |
+
interface = create_interface()
|
942 |
+
|
943 |
+
if __name__ == "__main__":
|
944 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==3.50.2
|
2 |
+
numpy==1.21.0
|
3 |
+
opencv-python==4.5.3.56
|
4 |
+
pillow==8.3.1
|
5 |
+
torch==1.9.0
|
6 |
+
torchvision==0.10.0
|
7 |
+
pandas==1.3.0
|
8 |
+
matplotlib==3.4.2
|
9 |
+
tqdm==4.61.2
|
10 |
+
scikit-image==0.18.2
|