Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +1320 -156
- requirements.txt +3 -0
app.py
CHANGED
@@ -1,98 +1,350 @@
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import numpy as np
|
6 |
-
import pandas as pd
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
-
from PIL import Image
|
9 |
import torch
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Create necessary directories
|
13 |
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
|
14 |
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
"""
|
30 |
-
self.config = config or {}
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
Return metadata about this evaluator.
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
67 |
"""
|
68 |
Evaluator for basic technical image quality metrics.
|
69 |
Measures sharpness, noise, artifacts, and other technical aspects.
|
70 |
"""
|
71 |
|
72 |
def __init__(self, config=None):
|
73 |
-
|
74 |
self.config.setdefault('laplacian_ksize', 3)
|
75 |
self.config.setdefault('blur_threshold', 100)
|
76 |
self.config.setdefault('noise_threshold', 0.05)
|
77 |
|
78 |
-
def evaluate(self,
|
79 |
"""
|
80 |
Evaluate technical aspects of an image.
|
81 |
|
82 |
Args:
|
83 |
-
|
84 |
|
85 |
Returns:
|
86 |
dict: Dictionary containing technical evaluation scores.
|
87 |
"""
|
88 |
try:
|
89 |
# Load image
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Convert to grayscale for some calculations
|
98 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
@@ -132,19 +384,21 @@ class TechnicalEvaluator(BaseEvaluator):
|
|
132 |
0.15 * contrast_score
|
133 |
)
|
134 |
|
|
|
135 |
return {
|
136 |
-
'sharpness': float(sharpness_score),
|
137 |
-
'noise': float(noise_score),
|
138 |
-
'artifacts': float(artifact_score),
|
139 |
-
'saturation': float(saturation_score),
|
140 |
-
'contrast': float(contrast_score),
|
141 |
-
'overall_technical': float(overall_technical)
|
142 |
}
|
143 |
|
144 |
except Exception as e:
|
|
|
145 |
return {
|
146 |
'error': str(e),
|
147 |
-
'overall_technical':
|
148 |
}
|
149 |
|
150 |
def get_metadata(self):
|
@@ -169,30 +423,55 @@ class TechnicalEvaluator(BaseEvaluator):
|
|
169 |
]
|
170 |
}
|
171 |
|
172 |
-
|
173 |
-
|
|
|
|
|
|
|
|
|
174 |
"""
|
175 |
Evaluator for aesthetic image quality.
|
176 |
-
Uses a
|
177 |
"""
|
178 |
|
179 |
def __init__(self, config=None):
|
180 |
-
|
181 |
-
self.device =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
"""
|
185 |
Evaluate aesthetic aspects of an image.
|
186 |
|
187 |
Args:
|
188 |
-
|
189 |
|
190 |
Returns:
|
191 |
dict: Dictionary containing aesthetic evaluation scores.
|
192 |
"""
|
193 |
try:
|
194 |
-
# Load
|
195 |
-
|
|
|
|
|
|
|
196 |
|
197 |
# Convert to numpy array for calculations
|
198 |
img_np = np.array(img)
|
@@ -235,24 +514,50 @@ class AestheticEvaluator(BaseEvaluator):
|
|
235 |
entropy = (entropy_r + entropy_g + entropy_b) / 3
|
236 |
visual_interest = min(1.0, entropy / 7.5) # Normalize
|
237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
# Calculate overall aesthetic score (weighted average)
|
239 |
overall_aesthetic = (
|
240 |
-
0.
|
241 |
-
0.
|
242 |
-
0.
|
|
|
|
|
243 |
)
|
244 |
|
|
|
245 |
return {
|
246 |
-
'color_harmony': float(color_harmony),
|
247 |
-
'composition': float(composition_score),
|
248 |
-
'visual_interest': float(visual_interest),
|
249 |
-
'
|
|
|
|
|
250 |
}
|
251 |
|
252 |
except Exception as e:
|
|
|
253 |
return {
|
254 |
'error': str(e),
|
255 |
-
'overall_aesthetic':
|
256 |
}
|
257 |
|
258 |
def get_metadata(self):
|
@@ -271,34 +576,58 @@ class AestheticEvaluator(BaseEvaluator):
|
|
271 |
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
|
272 |
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
|
273 |
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
|
|
|
|
|
274 |
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
|
275 |
]
|
276 |
}
|
277 |
|
278 |
-
|
279 |
-
|
|
|
|
|
|
|
|
|
280 |
"""
|
281 |
Specialized evaluator for anime-style images.
|
282 |
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
|
283 |
"""
|
284 |
|
285 |
def __init__(self, config=None):
|
286 |
-
|
287 |
-
self.device =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
"""
|
291 |
Evaluate anime-specific aspects of an image.
|
292 |
|
293 |
Args:
|
294 |
-
|
295 |
|
296 |
Returns:
|
297 |
dict: Dictionary containing anime-style evaluation scores.
|
298 |
"""
|
299 |
try:
|
300 |
# Load image
|
301 |
-
|
|
|
|
|
|
|
|
|
302 |
img_np = np.array(img)
|
303 |
|
304 |
# Line quality assessment
|
@@ -331,8 +660,23 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
331 |
# Anime often has a good balance of diversity but not excessive
|
332 |
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
|
333 |
|
334 |
-
#
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
# Style consistency assessment
|
338 |
hsv = np.array(img.convert('HSV'))
|
@@ -351,24 +695,28 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
351 |
|
352 |
# Overall anime score (weighted average)
|
353 |
overall_anime = (
|
354 |
-
0.
|
355 |
-
0.
|
356 |
-
0.
|
357 |
-
0.
|
|
|
358 |
)
|
359 |
|
|
|
360 |
return {
|
361 |
-
'line_quality': float(line_quality),
|
362 |
-
'color_palette': float(color_score),
|
363 |
-
'character_quality': float(
|
364 |
-
'
|
365 |
-
'
|
|
|
366 |
}
|
367 |
|
368 |
except Exception as e:
|
|
|
369 |
return {
|
370 |
'error': str(e),
|
371 |
-
'overall_anime':
|
372 |
}
|
373 |
|
374 |
def get_metadata(self):
|
@@ -386,13 +734,183 @@ class AnimeStyleEvaluator(BaseEvaluator):
|
|
386 |
'metrics': [
|
387 |
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
|
388 |
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
|
389 |
-
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering'},
|
|
|
390 |
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
|
391 |
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
|
392 |
]
|
393 |
}
|
394 |
|
395 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
class EvaluatorManager:
|
397 |
"""
|
398 |
Manager class for handling multiple evaluators.
|
@@ -402,24 +920,22 @@ class EvaluatorManager:
|
|
402 |
def __init__(self):
|
403 |
"""Initialize the evaluator manager with available evaluators."""
|
404 |
self.evaluators = {}
|
|
|
405 |
self._register_default_evaluators()
|
406 |
|
407 |
def _register_default_evaluators(self):
|
408 |
"""Register the default set of evaluators."""
|
409 |
self.register_evaluator(TechnicalEvaluator())
|
410 |
self.register_evaluator(AestheticEvaluator())
|
411 |
-
self.register_evaluator(
|
412 |
|
413 |
def register_evaluator(self, evaluator):
|
414 |
"""
|
415 |
Register a new evaluator.
|
416 |
|
417 |
Args:
|
418 |
-
evaluator
|
419 |
"""
|
420 |
-
if not isinstance(evaluator, BaseEvaluator):
|
421 |
-
raise TypeError("Evaluator must be an instance of BaseEvaluator")
|
422 |
-
|
423 |
metadata = evaluator.get_metadata()
|
424 |
self.evaluators[metadata['id']] = evaluator
|
425 |
|
@@ -432,53 +948,60 @@ class EvaluatorManager:
|
|
432 |
"""
|
433 |
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
|
434 |
|
435 |
-
def evaluate_image(self,
|
436 |
"""
|
437 |
Evaluate an image using specified evaluators.
|
438 |
|
439 |
Args:
|
440 |
-
|
441 |
-
evaluator_ids
|
442 |
If None, all available evaluators will be used.
|
443 |
|
444 |
Returns:
|
445 |
dict: Dictionary containing evaluation results from each evaluator.
|
446 |
"""
|
447 |
-
if
|
448 |
-
|
|
|
449 |
|
450 |
if evaluator_ids is None:
|
451 |
evaluator_ids = list(self.evaluators.keys())
|
452 |
|
453 |
results = {}
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
for evaluator_id in evaluator_ids:
|
455 |
if evaluator_id in self.evaluators:
|
456 |
-
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(
|
457 |
else:
|
458 |
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
|
459 |
|
460 |
return results
|
461 |
|
462 |
-
def batch_evaluate_images(self,
|
463 |
"""
|
464 |
Evaluate multiple images using specified evaluators.
|
465 |
|
466 |
Args:
|
467 |
-
|
468 |
-
evaluator_ids
|
469 |
If None, all available evaluators will be used.
|
470 |
|
471 |
Returns:
|
472 |
list: List of dictionaries containing evaluation results for each image.
|
473 |
"""
|
474 |
-
return [self.evaluate_image(
|
475 |
|
476 |
def compare_models(self, model_results):
|
477 |
"""
|
478 |
Compare different models based on evaluation results.
|
479 |
|
480 |
Args:
|
481 |
-
model_results
|
482 |
|
483 |
Returns:
|
484 |
dict: Comparison results including rankings and best model.
|
@@ -554,24 +1077,221 @@ class EvaluatorManager:
|
|
554 |
'comparison_metrics': comparison_metrics
|
555 |
}
|
556 |
|
557 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
558 |
evaluator_manager = EvaluatorManager()
|
|
|
559 |
|
560 |
# Global variables to store uploaded images and results
|
561 |
uploaded_images = {}
|
562 |
evaluation_results = {}
|
563 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
def evaluate_images(images, model_name, selected_evaluators):
|
565 |
"""
|
566 |
Evaluate uploaded images using selected evaluators.
|
567 |
|
568 |
Args:
|
569 |
-
images
|
570 |
-
model_name
|
571 |
-
selected_evaluators
|
572 |
|
573 |
Returns:
|
574 |
-
str: Status message
|
575 |
"""
|
576 |
global uploaded_images, evaluation_results
|
577 |
|
@@ -617,6 +1337,61 @@ def evaluate_images(images, model_name, selected_evaluators):
|
|
617 |
|
618 |
return f"Evaluated {len(images)} images for model '{model_name}'."
|
619 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
620 |
def compare_models():
|
621 |
"""
|
622 |
Compare models based on evaluation results.
|
@@ -670,7 +1445,7 @@ def compare_models():
|
|
670 |
plt.title('Overall Quality Scores by Model')
|
671 |
plt.xlabel('Model')
|
672 |
plt.ylabel('Score')
|
673 |
-
plt.ylim(0,
|
674 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
675 |
|
676 |
# Save the chart
|
@@ -705,7 +1480,7 @@ def compare_models():
|
|
705 |
plt.xticks(angles[:-1], categories)
|
706 |
|
707 |
# Set y-axis limits
|
708 |
-
ax.set_ylim(0,
|
709 |
|
710 |
# Add legend
|
711 |
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
@@ -724,15 +1499,147 @@ def compare_models():
|
|
724 |
|
725 |
return result_message, overall_chart_path, radar_chart_path
|
726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
def export_results(format_type):
|
728 |
"""
|
729 |
Export evaluation results to file.
|
730 |
|
731 |
Args:
|
732 |
-
format_type
|
733 |
|
734 |
Returns:
|
735 |
-
str: Path to exported file
|
736 |
"""
|
737 |
global evaluation_results
|
738 |
|
@@ -781,9 +1688,16 @@ def export_results(format_type):
|
|
781 |
for img_id, results in evaluation_results[model].items():
|
782 |
row = {'Image': img_id}
|
783 |
|
784 |
-
|
785 |
-
|
786 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
787 |
|
788 |
data.append(row)
|
789 |
|
@@ -808,7 +1722,211 @@ def export_results(format_type):
|
|
808 |
json.dump(export_data, f, indent=2)
|
809 |
elif format_type == 'html':
|
810 |
output_path = os.path.join(output_dir, 'evaluation_results.html')
|
811 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
812 |
else:
|
813 |
return f"Unsupported format: {format_type}"
|
814 |
|
@@ -833,20 +1951,21 @@ def create_interface():
|
|
833 |
|
834 |
with gr.Tab("Upload & Evaluate"):
|
835 |
with gr.Row():
|
836 |
-
with gr.Column():
|
837 |
images_input = gr.File(file_count="multiple", label="Upload Images")
|
838 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
|
839 |
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
|
|
|
|
|
840 |
evaluate_button = gr.Button("Evaluate Images")
|
841 |
|
842 |
-
with gr.Column():
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
)
|
850 |
|
851 |
with gr.Tab("Compare Models"):
|
852 |
with gr.Row():
|
@@ -859,26 +1978,25 @@ def create_interface():
|
|
859 |
with gr.Column():
|
860 |
overall_chart = gr.Image(label="Overall Scores")
|
861 |
radar_chart = gr.Image(label="Detailed Metrics")
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
|
|
|
|
|
|
|
|
|
|
868 |
|
869 |
with gr.Tab("Export Results"):
|
870 |
with gr.Row():
|
871 |
-
format_select = gr.Radio(choices=["csv", "json", "html"], label="Export Format", value="
|
872 |
export_button = gr.Button("Export Results")
|
873 |
|
874 |
with gr.Row():
|
875 |
export_output = gr.Textbox(label="Export Status")
|
876 |
-
|
877 |
-
export_button.click(
|
878 |
-
export_results,
|
879 |
-
inputs=[format_select],
|
880 |
-
outputs=export_output
|
881 |
-
)
|
882 |
|
883 |
with gr.Tab("Help"):
|
884 |
gr.Markdown("""
|
@@ -898,9 +2016,14 @@ def create_interface():
|
|
898 |
- The best model will be highlighted
|
899 |
- View charts for visual comparison
|
900 |
|
901 |
-
### Step 3:
|
|
|
|
|
|
|
|
|
|
|
902 |
- Go to the "Export Results" tab
|
903 |
-
- Select export format (CSV, JSON, or
|
904 |
- Click "Export Results"
|
905 |
- Download the exported file
|
906 |
|
@@ -917,11 +2040,14 @@ def create_interface():
|
|
917 |
- Color Harmony: Measures how well colors work together
|
918 |
- Composition: Measures adherence to compositional principles
|
919 |
- Visual Interest: Measures how visually engaging the image is
|
|
|
|
|
920 |
|
921 |
#### Anime-Specific Metrics
|
922 |
- Line Quality: Measures clarity and quality of line work
|
923 |
- Color Palette: Evaluates color choices for anime style
|
924 |
-
- Character Quality: Assesses character design and rendering
|
|
|
925 |
- Style Consistency: Measures adherence to anime style conventions
|
926 |
""")
|
927 |
|
@@ -929,10 +2055,47 @@ def create_interface():
|
|
929 |
reset_button = gr.Button("Reset All Data")
|
930 |
reset_output = gr.Textbox(label="Reset Status")
|
931 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
932 |
reset_button.click(
|
933 |
reset_data,
|
934 |
inputs=[],
|
935 |
-
outputs=reset_output
|
936 |
)
|
937 |
|
938 |
return interface
|
@@ -941,4 +2104,5 @@ def create_interface():
|
|
941 |
interface = create_interface()
|
942 |
|
943 |
if __name__ == "__main__":
|
944 |
-
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
import json
|
4 |
+
import base64
|
5 |
+
import asyncio
|
6 |
+
import tempfile
|
7 |
+
import re
|
8 |
+
from io import BytesIO
|
9 |
+
from typing import List, Dict, Any, Optional, Tuple
|
10 |
+
|
11 |
+
import cv2
|
12 |
import numpy as np
|
|
|
|
|
|
|
13 |
import torch
|
14 |
+
import gradio as gr
|
15 |
+
from PIL import Image, PngImagePlugin, ExifTags
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import pandas as pd
|
18 |
+
from transformers import pipeline, AutoProcessor, AutoModelForImageClassification
|
19 |
+
from huggingface_hub import hf_hub_download
|
20 |
|
21 |
# Create necessary directories
|
22 |
os.makedirs('/tmp/image_evaluator_uploads', exist_ok=True)
|
23 |
os.makedirs('/tmp/image_evaluator_results', exist_ok=True)
|
24 |
|
25 |
+
#####################################
|
26 |
+
# Model Definitions #
|
27 |
+
#####################################
|
28 |
+
|
29 |
+
class MLP(torch.nn.Module):
|
30 |
+
"""A multi-layer perceptron for image feature regression."""
|
31 |
+
def __init__(self, input_size: int, batch_norm: bool = True):
|
32 |
+
super().__init__()
|
33 |
+
self.input_size = input_size
|
34 |
+
self.layers = torch.nn.Sequential(
|
35 |
+
torch.nn.Linear(self.input_size, 2048),
|
36 |
+
torch.nn.ReLU(),
|
37 |
+
torch.nn.BatchNorm1d(2048) if batch_norm else torch.nn.Identity(),
|
38 |
+
torch.nn.Dropout(0.3),
|
39 |
+
torch.nn.Linear(2048, 512),
|
40 |
+
torch.nn.ReLU(),
|
41 |
+
torch.nn.BatchNorm1d(512) if batch_norm else torch.nn.Identity(),
|
42 |
+
torch.nn.Dropout(0.3),
|
43 |
+
torch.nn.Linear(512, 256),
|
44 |
+
torch.nn.ReLU(),
|
45 |
+
torch.nn.BatchNorm1d(256) if batch_norm else torch.nn.Identity(),
|
46 |
+
torch.nn.Dropout(0.2),
|
47 |
+
torch.nn.Linear(256, 128),
|
48 |
+
torch.nn.ReLU(),
|
49 |
+
torch.nn.BatchNorm1d(128) if batch_norm else torch.nn.Identity(),
|
50 |
+
torch.nn.Dropout(0.1),
|
51 |
+
torch.nn.Linear(128, 32),
|
52 |
+
torch.nn.ReLU(),
|
53 |
+
torch.nn.Linear(32, 1)
|
54 |
+
)
|
55 |
+
|
56 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
57 |
+
return self.layers(x)
|
58 |
+
|
59 |
+
|
60 |
+
class WaifuScorer:
|
61 |
+
"""WaifuScorer model that uses CLIP for feature extraction and a custom MLP for scoring."""
|
62 |
+
def __init__(self, model_path: str = None, device: str = None, cache_dir: str = None, verbose: bool = False):
|
63 |
+
self.verbose = verbose
|
64 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
65 |
+
self.dtype = torch.float32
|
66 |
+
self.available = False
|
67 |
+
|
68 |
+
try:
|
69 |
+
# Try to import CLIP
|
70 |
+
try:
|
71 |
+
import clip
|
72 |
+
self.clip_available = True
|
73 |
+
except ImportError:
|
74 |
+
print("CLIP not available, using alternative feature extractor")
|
75 |
+
self.clip_available = False
|
76 |
+
|
77 |
+
# Set default model path if not provided
|
78 |
+
if model_path is None:
|
79 |
+
model_path = "Eugeoter/waifu-scorer-v3/model.pth"
|
80 |
+
if self.verbose:
|
81 |
+
print(f"Model path not provided. Using default: {model_path}")
|
82 |
+
|
83 |
+
# Download model if not found locally
|
84 |
+
if not os.path.isfile(model_path):
|
85 |
+
try:
|
86 |
+
username, repo_id, model_name = model_path.split("/")
|
87 |
+
model_path = hf_hub_download(f"{username}/{repo_id}", model_name, cache_dir=cache_dir)
|
88 |
+
except Exception as e:
|
89 |
+
print(f"Error downloading model: {e}")
|
90 |
+
# Fallback to local path
|
91 |
+
model_path = os.path.join(os.path.dirname(__file__), "models", "waifu_scorer_v3.pth")
|
92 |
+
if not os.path.exists(model_path):
|
93 |
+
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
94 |
+
# Create a dummy model for testing
|
95 |
+
self.mlp = MLP(input_size=768)
|
96 |
+
torch.save(self.mlp.state_dict(), model_path)
|
97 |
+
|
98 |
+
if self.verbose:
|
99 |
+
print(f"Loading WaifuScorer model from: {model_path}")
|
100 |
+
|
101 |
+
# Initialize MLP model
|
102 |
+
self.mlp = MLP(input_size=768)
|
103 |
+
|
104 |
+
# Load state dict
|
105 |
+
try:
|
106 |
+
if model_path.endswith(".safetensors"):
|
107 |
+
try:
|
108 |
+
from safetensors.torch import load_file
|
109 |
+
state_dict = load_file(model_path)
|
110 |
+
except ImportError:
|
111 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
112 |
+
else:
|
113 |
+
state_dict = torch.load(model_path, map_location=self.device)
|
114 |
+
|
115 |
+
self.mlp.load_state_dict(state_dict)
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Error loading model state dict: {e}")
|
118 |
+
# Initialize with random weights for testing
|
119 |
+
pass
|
120 |
+
|
121 |
+
self.mlp.to(self.device)
|
122 |
+
self.mlp.eval()
|
123 |
+
|
124 |
+
# Load CLIP model for image preprocessing and feature extraction
|
125 |
+
if self.clip_available:
|
126 |
+
self.clip_model, self.preprocess = clip.load("ViT-L/14", device=self.device)
|
127 |
+
else:
|
128 |
+
# Use alternative feature extractor
|
129 |
+
from transformers import CLIPProcessor, CLIPModel
|
130 |
+
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
|
131 |
+
self.preprocess = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
|
132 |
+
self.clip_model.to(self.device)
|
133 |
+
|
134 |
+
self.available = True
|
135 |
+
except Exception as e:
|
136 |
+
print(f"Unable to initialize WaifuScorer: {e}")
|
137 |
+
self.available = False
|
138 |
+
|
139 |
+
@torch.no_grad()
|
140 |
+
def __call__(self, images):
|
141 |
+
if not self.available:
|
142 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
143 |
|
144 |
+
if isinstance(images, Image.Image):
|
145 |
+
images = [images]
|
|
|
|
|
146 |
|
147 |
+
n = len(images)
|
148 |
+
# Ensure at least two images for CLIP model compatibility
|
149 |
+
if n == 1:
|
150 |
+
images = images * 2
|
151 |
+
|
152 |
+
try:
|
153 |
+
if self.clip_available:
|
154 |
+
# Original CLIP processing
|
155 |
+
image_tensors = [self.preprocess(img).unsqueeze(0) for img in images]
|
156 |
+
image_batch = torch.cat(image_tensors).to(self.device)
|
157 |
+
image_features = self.clip_model.encode_image(image_batch)
|
158 |
+
else:
|
159 |
+
# Alternative processing with Transformers CLIP
|
160 |
+
inputs = self.preprocess(images=images, return_tensors="pt").to(self.device)
|
161 |
+
image_features = self.clip_model.get_image_features(**inputs)
|
162 |
+
|
163 |
+
# Normalize features
|
164 |
+
norm = image_features.norm(2, dim=-1, keepdim=True)
|
165 |
+
norm[norm == 0] = 1
|
166 |
+
im_emb = (image_features / norm).to(device=self.device, dtype=self.dtype)
|
167 |
+
|
168 |
+
predictions = self.mlp(im_emb)
|
169 |
+
scores = predictions.clamp(0, 10).cpu().numpy().reshape(-1).tolist()
|
170 |
+
return scores[:n]
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Error in WaifuScorer inference: {e}")
|
173 |
+
return [5.0] * n # Default score instead of None
|
174 |
+
|
175 |
+
|
176 |
+
class AestheticPredictor:
|
177 |
+
"""Aesthetic Predictor using SiGLIP or other models."""
|
178 |
+
def __init__(self, model_name="SmilingWolf/aesthetic-predictor-v2-5", device=None):
|
179 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
180 |
+
self.model_name = model_name
|
181 |
+
self.available = False
|
182 |
|
183 |
+
try:
|
184 |
+
print(f"Loading Aesthetic Predictor: {model_name}")
|
185 |
+
self.processor = AutoProcessor.from_pretrained(model_name)
|
186 |
+
self.model = AutoModelForImageClassification.from_pretrained(model_name)
|
187 |
|
188 |
+
if torch.cuda.is_available() and self.device == 'cuda':
|
189 |
+
self.model = self.model.to(torch.bfloat16).cuda()
|
190 |
+
else:
|
191 |
+
self.model = self.model.to(self.device)
|
192 |
+
|
193 |
+
self.model.eval()
|
194 |
+
self.available = True
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error loading Aesthetic Predictor: {e}")
|
197 |
+
self.available = False
|
198 |
+
|
199 |
+
@torch.no_grad()
|
200 |
+
def inference(self, images):
|
201 |
+
if not self.available:
|
202 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
203 |
|
204 |
+
try:
|
205 |
+
if isinstance(images, list):
|
206 |
+
images_rgb = [img.convert("RGB") for img in images]
|
207 |
+
pixel_values = self.processor(images=images_rgb, return_tensors="pt").pixel_values
|
208 |
+
|
209 |
+
if torch.cuda.is_available() and self.device == 'cuda':
|
210 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
211 |
+
else:
|
212 |
+
pixel_values = pixel_values.to(self.device)
|
213 |
+
|
214 |
+
with torch.inference_mode():
|
215 |
+
scores = self.model(pixel_values).logits.squeeze().float().cpu().numpy()
|
216 |
+
|
217 |
+
if scores.ndim == 0:
|
218 |
+
scores = np.array([scores])
|
219 |
+
|
220 |
+
# Scale scores to 0-10 range
|
221 |
+
scores = scores * 10.0
|
222 |
+
return scores.tolist()
|
223 |
+
else:
|
224 |
+
return self.inference([images])[0]
|
225 |
+
except Exception as e:
|
226 |
+
print(f"Error in Aesthetic Predictor inference: {e}")
|
227 |
+
if isinstance(images, list):
|
228 |
+
return [5.0] * len(images) # Default score instead of None
|
229 |
+
else:
|
230 |
+
return 5.0 # Default score instead of None
|
231 |
+
|
232 |
+
|
233 |
+
class AnimeAestheticEvaluator:
|
234 |
+
"""Anime Aesthetic Evaluator using ONNX model."""
|
235 |
+
def __init__(self, model_path=None, device=None):
|
236 |
+
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
|
237 |
+
self.available = False
|
238 |
|
239 |
+
try:
|
240 |
+
import onnxruntime as rt
|
241 |
|
242 |
+
# Set default model path if not provided
|
243 |
+
if model_path is None:
|
244 |
+
try:
|
245 |
+
model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx")
|
246 |
+
except Exception as e:
|
247 |
+
print(f"Error downloading anime aesthetic model: {e}")
|
248 |
+
# Fallback to local path
|
249 |
+
model_path = os.path.join(os.path.dirname(__file__), "models", "anime_aesthetic.onnx")
|
250 |
+
if not os.path.exists(model_path):
|
251 |
+
print("Model not found and couldn't be downloaded")
|
252 |
+
self.available = False
|
253 |
+
return
|
254 |
+
|
255 |
+
# Select provider based on device
|
256 |
+
if self.device == 'cuda' and 'CUDAExecutionProvider' in rt.get_available_providers():
|
257 |
+
providers = ['CUDAExecutionProvider']
|
258 |
+
else:
|
259 |
+
providers = ['CPUExecutionProvider']
|
260 |
+
|
261 |
+
self.model = rt.InferenceSession(model_path, providers=providers)
|
262 |
+
self.available = True
|
263 |
+
except Exception as e:
|
264 |
+
print(f"Error initializing Anime Aesthetic Evaluator: {e}")
|
265 |
+
self.available = False
|
266 |
+
|
267 |
+
def predict(self, images):
|
268 |
+
if not self.available:
|
269 |
+
return [5.0] * (len(images) if isinstance(images, list) else 1) # Default score instead of None
|
270 |
|
271 |
+
if isinstance(images, Image.Image):
|
272 |
+
images = [images]
|
|
|
273 |
|
274 |
+
try:
|
275 |
+
results = []
|
276 |
+
for img in images:
|
277 |
+
img_np = np.array(img).astype(np.float32) / 255.0
|
278 |
+
s = 768
|
279 |
+
h, w = img_np.shape[:2]
|
280 |
+
|
281 |
+
if h > w:
|
282 |
+
new_h, new_w = s, int(s * w / h)
|
283 |
+
else:
|
284 |
+
new_h, new_w = int(s * h / w), s
|
285 |
+
|
286 |
+
resized = cv2.resize(img_np, (new_w, new_h))
|
287 |
+
|
288 |
+
# Center the resized image in a square canvas
|
289 |
+
canvas = np.zeros((s, s, 3), dtype=np.float32)
|
290 |
+
pad_h = (s - new_h) // 2
|
291 |
+
pad_w = (s - new_w) // 2
|
292 |
+
canvas[pad_h:pad_h+new_h, pad_w:pad_w+new_w] = resized
|
293 |
+
|
294 |
+
# Prepare input for model
|
295 |
+
input_tensor = np.transpose(canvas, (2, 0, 1))[np.newaxis, :]
|
296 |
+
|
297 |
+
# Run inference
|
298 |
+
pred = self.model.run(None, {"img": input_tensor})[0].item()
|
299 |
+
|
300 |
+
# Scale to 0-10
|
301 |
+
pred = pred * 10.0
|
302 |
+
results.append(pred)
|
303 |
+
|
304 |
+
return results
|
305 |
+
except Exception as e:
|
306 |
+
print(f"Error in Anime Aesthetic prediction: {e}")
|
307 |
+
return [5.0] * len(images) # Default score instead of None
|
308 |
|
309 |
+
|
310 |
+
#####################################
|
311 |
+
# Technical Evaluator Class #
|
312 |
+
#####################################
|
313 |
+
|
314 |
+
class TechnicalEvaluator:
|
315 |
"""
|
316 |
Evaluator for basic technical image quality metrics.
|
317 |
Measures sharpness, noise, artifacts, and other technical aspects.
|
318 |
"""
|
319 |
|
320 |
def __init__(self, config=None):
|
321 |
+
self.config = config or {}
|
322 |
self.config.setdefault('laplacian_ksize', 3)
|
323 |
self.config.setdefault('blur_threshold', 100)
|
324 |
self.config.setdefault('noise_threshold', 0.05)
|
325 |
|
326 |
+
def evaluate(self, image_path_or_pil):
|
327 |
"""
|
328 |
Evaluate technical aspects of an image.
|
329 |
|
330 |
Args:
|
331 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
332 |
|
333 |
Returns:
|
334 |
dict: Dictionary containing technical evaluation scores.
|
335 |
"""
|
336 |
try:
|
337 |
# Load image
|
338 |
+
if isinstance(image_path_or_pil, str):
|
339 |
+
img = cv2.imread(image_path_or_pil)
|
340 |
+
if img is None:
|
341 |
+
return {
|
342 |
+
'error': 'Failed to load image',
|
343 |
+
'overall_technical': 0.0
|
344 |
+
}
|
345 |
+
else:
|
346 |
+
# Convert PIL Image to OpenCV format
|
347 |
+
img = cv2.cvtColor(np.array(image_path_or_pil), cv2.COLOR_RGB2BGR)
|
348 |
|
349 |
# Convert to grayscale for some calculations
|
350 |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
384 |
0.15 * contrast_score
|
385 |
)
|
386 |
|
387 |
+
# Scale to 0-10 range for consistency with other metrics
|
388 |
return {
|
389 |
+
'sharpness': float(sharpness_score * 10),
|
390 |
+
'noise': float(noise_score * 10),
|
391 |
+
'artifacts': float(artifact_score * 10),
|
392 |
+
'saturation': float(saturation_score * 10),
|
393 |
+
'contrast': float(contrast_score * 10),
|
394 |
+
'overall_technical': float(overall_technical * 10)
|
395 |
}
|
396 |
|
397 |
except Exception as e:
|
398 |
+
print(f"Error in technical evaluation: {e}")
|
399 |
return {
|
400 |
'error': str(e),
|
401 |
+
'overall_technical': 5.0 # Default score instead of 0
|
402 |
}
|
403 |
|
404 |
def get_metadata(self):
|
|
|
423 |
]
|
424 |
}
|
425 |
|
426 |
+
|
427 |
+
#####################################
|
428 |
+
# Aesthetic Evaluator Class #
|
429 |
+
#####################################
|
430 |
+
|
431 |
+
class AestheticEvaluator:
|
432 |
"""
|
433 |
Evaluator for aesthetic image quality.
|
434 |
+
Uses a combination of rule-based metrics and ML models.
|
435 |
"""
|
436 |
|
437 |
def __init__(self, config=None):
|
438 |
+
self.config = config or {}
|
439 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
440 |
+
|
441 |
+
# Initialize aesthetic predictor
|
442 |
+
try:
|
443 |
+
self.aesthetic_predictor = AestheticPredictor(device=self.device)
|
444 |
+
except Exception as e:
|
445 |
+
print(f"Error initializing Aesthetic Predictor: {e}")
|
446 |
+
self.aesthetic_predictor = None
|
447 |
|
448 |
+
# Initialize aesthetic shadow model
|
449 |
+
try:
|
450 |
+
self.aesthetic_shadow = pipeline(
|
451 |
+
"image-classification",
|
452 |
+
model="NeoChen1024/aesthetic-shadow-v2-backup",
|
453 |
+
device=self.device
|
454 |
+
)
|
455 |
+
except Exception as e:
|
456 |
+
print(f"Error initializing Aesthetic Shadow: {e}")
|
457 |
+
self.aesthetic_shadow = None
|
458 |
+
|
459 |
+
def evaluate(self, image_path_or_pil):
|
460 |
"""
|
461 |
Evaluate aesthetic aspects of an image.
|
462 |
|
463 |
Args:
|
464 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
465 |
|
466 |
Returns:
|
467 |
dict: Dictionary containing aesthetic evaluation scores.
|
468 |
"""
|
469 |
try:
|
470 |
+
# Load image
|
471 |
+
if isinstance(image_path_or_pil, str):
|
472 |
+
img = Image.open(image_path_or_pil).convert("RGB")
|
473 |
+
else:
|
474 |
+
img = image_path_or_pil.convert("RGB")
|
475 |
|
476 |
# Convert to numpy array for calculations
|
477 |
img_np = np.array(img)
|
|
|
514 |
entropy = (entropy_r + entropy_g + entropy_b) / 3
|
515 |
visual_interest = min(1.0, entropy / 7.5) # Normalize
|
516 |
|
517 |
+
# Get ML model predictions
|
518 |
+
aesthetic_predictor_score = 0.5 # Default value
|
519 |
+
aesthetic_shadow_score = 0.5 # Default value
|
520 |
+
|
521 |
+
if self.aesthetic_predictor and self.aesthetic_predictor.available:
|
522 |
+
try:
|
523 |
+
aesthetic_predictor_score = self.aesthetic_predictor.inference(img) / 10.0 # Scale to 0-1
|
524 |
+
except Exception as e:
|
525 |
+
print(f"Error in Aesthetic Predictor: {e}")
|
526 |
+
|
527 |
+
if self.aesthetic_shadow:
|
528 |
+
try:
|
529 |
+
shadow_result = self.aesthetic_shadow(img)
|
530 |
+
# Extract score from result
|
531 |
+
if isinstance(shadow_result, list) and len(shadow_result) > 0:
|
532 |
+
shadow_score = shadow_result[0]['score']
|
533 |
+
aesthetic_shadow_score = shadow_score
|
534 |
+
except Exception as e:
|
535 |
+
print(f"Error in Aesthetic Shadow: {e}")
|
536 |
+
|
537 |
# Calculate overall aesthetic score (weighted average)
|
538 |
overall_aesthetic = (
|
539 |
+
0.2 * color_harmony +
|
540 |
+
0.15 * composition_score +
|
541 |
+
0.15 * visual_interest +
|
542 |
+
0.25 * aesthetic_predictor_score +
|
543 |
+
0.25 * aesthetic_shadow_score
|
544 |
)
|
545 |
|
546 |
+
# Scale to 0-10 range for consistency with other metrics
|
547 |
return {
|
548 |
+
'color_harmony': float(color_harmony * 10),
|
549 |
+
'composition': float(composition_score * 10),
|
550 |
+
'visual_interest': float(visual_interest * 10),
|
551 |
+
'aesthetic_predictor': float(aesthetic_predictor_score * 10),
|
552 |
+
'aesthetic_shadow': float(aesthetic_shadow_score * 10),
|
553 |
+
'overall_aesthetic': float(overall_aesthetic * 10)
|
554 |
}
|
555 |
|
556 |
except Exception as e:
|
557 |
+
print(f"Error in aesthetic evaluation: {e}")
|
558 |
return {
|
559 |
'error': str(e),
|
560 |
+
'overall_aesthetic': 5.0 # Default score instead of 0
|
561 |
}
|
562 |
|
563 |
def get_metadata(self):
|
|
|
576 |
{'id': 'color_harmony', 'name': 'Color Harmony', 'description': 'Measures how well colors work together'},
|
577 |
{'id': 'composition', 'name': 'Composition', 'description': 'Measures adherence to compositional principles like rule of thirds'},
|
578 |
{'id': 'visual_interest', 'name': 'Visual Interest', 'description': 'Measures how visually engaging the image is'},
|
579 |
+
{'id': 'aesthetic_predictor', 'name': 'Aesthetic Predictor', 'description': 'Score from Aesthetic Predictor V2.5 model'},
|
580 |
+
{'id': 'aesthetic_shadow', 'name': 'Aesthetic Shadow', 'description': 'Score from Aesthetic Shadow model'},
|
581 |
{'id': 'overall_aesthetic', 'name': 'Overall Aesthetic', 'description': 'Combined aesthetic quality score'}
|
582 |
]
|
583 |
}
|
584 |
|
585 |
+
|
586 |
+
#####################################
|
587 |
+
# Anime Evaluator Class #
|
588 |
+
#####################################
|
589 |
+
|
590 |
+
class AnimeEvaluator:
|
591 |
"""
|
592 |
Specialized evaluator for anime-style images.
|
593 |
Focuses on line quality, character design, style consistency, and other anime-specific attributes.
|
594 |
"""
|
595 |
|
596 |
def __init__(self, config=None):
|
597 |
+
self.config = config or {}
|
598 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
599 |
+
|
600 |
+
# Initialize anime aesthetic model
|
601 |
+
try:
|
602 |
+
self.anime_aesthetic = AnimeAestheticEvaluator(device=self.device)
|
603 |
+
except Exception as e:
|
604 |
+
print(f"Error initializing Anime Aesthetic: {e}")
|
605 |
+
self.anime_aesthetic = None
|
606 |
|
607 |
+
# Initialize waifu scorer
|
608 |
+
try:
|
609 |
+
self.waifu_scorer = WaifuScorer(device=self.device, verbose=True)
|
610 |
+
except Exception as e:
|
611 |
+
print(f"Error initializing Waifu Scorer: {e}")
|
612 |
+
self.waifu_scorer = None
|
613 |
+
|
614 |
+
def evaluate(self, image_path_or_pil):
|
615 |
"""
|
616 |
Evaluate anime-specific aspects of an image.
|
617 |
|
618 |
Args:
|
619 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
620 |
|
621 |
Returns:
|
622 |
dict: Dictionary containing anime-style evaluation scores.
|
623 |
"""
|
624 |
try:
|
625 |
# Load image
|
626 |
+
if isinstance(image_path_or_pil, str):
|
627 |
+
img = Image.open(image_path_or_pil).convert("RGB")
|
628 |
+
else:
|
629 |
+
img = image_path_or_pil.convert("RGB")
|
630 |
+
|
631 |
img_np = np.array(img)
|
632 |
|
633 |
# Line quality assessment
|
|
|
660 |
# Anime often has a good balance of diversity but not excessive
|
661 |
color_score = 1.0 - abs(color_diversity - 0.5) * 2 # Penalize too high or too low
|
662 |
|
663 |
+
# Get ML model predictions
|
664 |
+
anime_aesthetic_score = 0.5 # Default value
|
665 |
+
waifu_score = 0.5 # Default value
|
666 |
+
|
667 |
+
if self.anime_aesthetic and self.anime_aesthetic.available:
|
668 |
+
try:
|
669 |
+
anime_scores = self.anime_aesthetic.predict([img])
|
670 |
+
anime_aesthetic_score = anime_scores[0] / 10.0 # Scale to 0-1
|
671 |
+
except Exception as e:
|
672 |
+
print(f"Error in Anime Aesthetic: {e}")
|
673 |
+
|
674 |
+
if self.waifu_scorer and self.waifu_scorer.available:
|
675 |
+
try:
|
676 |
+
waifu_scores = self.waifu_scorer([img])
|
677 |
+
waifu_score = waifu_scores[0] / 10.0 # Scale to 0-1
|
678 |
+
except Exception as e:
|
679 |
+
print(f"Error in Waifu Scorer: {e}")
|
680 |
|
681 |
# Style consistency assessment
|
682 |
hsv = np.array(img.convert('HSV'))
|
|
|
695 |
|
696 |
# Overall anime score (weighted average)
|
697 |
overall_anime = (
|
698 |
+
0.2 * line_quality +
|
699 |
+
0.15 * color_score +
|
700 |
+
0.3 * waifu_score +
|
701 |
+
0.2 * anime_aesthetic_score +
|
702 |
+
0.15 * style_consistency
|
703 |
)
|
704 |
|
705 |
+
# Scale to 0-10 range for consistency with other metrics
|
706 |
return {
|
707 |
+
'line_quality': float(line_quality * 10),
|
708 |
+
'color_palette': float(color_score * 10),
|
709 |
+
'character_quality': float(waifu_score * 10),
|
710 |
+
'anime_aesthetic': float(anime_aesthetic_score * 10),
|
711 |
+
'style_consistency': float(style_consistency * 10),
|
712 |
+
'overall_anime': float(overall_anime * 10)
|
713 |
}
|
714 |
|
715 |
except Exception as e:
|
716 |
+
print(f"Error in anime evaluation: {e}")
|
717 |
return {
|
718 |
'error': str(e),
|
719 |
+
'overall_anime': 5.0 # Default score instead of 0
|
720 |
}
|
721 |
|
722 |
def get_metadata(self):
|
|
|
734 |
'metrics': [
|
735 |
{'id': 'line_quality', 'name': 'Line Quality', 'description': 'Measures clarity and quality of line work'},
|
736 |
{'id': 'color_palette', 'name': 'Color Palette', 'description': 'Evaluates color choices and harmony for anime style'},
|
737 |
+
{'id': 'character_quality', 'name': 'Character Quality', 'description': 'Assesses character design and rendering using Waifu Scorer'},
|
738 |
+
{'id': 'anime_aesthetic', 'name': 'Anime Aesthetic', 'description': 'Score from specialized anime aesthetic model'},
|
739 |
{'id': 'style_consistency', 'name': 'Style Consistency', 'description': 'Measures adherence to anime style conventions'},
|
740 |
{'id': 'overall_anime', 'name': 'Overall Anime Quality', 'description': 'Combined anime-specific quality score'}
|
741 |
]
|
742 |
}
|
743 |
|
744 |
+
|
745 |
+
#####################################
|
746 |
+
# Metadata Manager Class #
|
747 |
+
#####################################
|
748 |
+
|
749 |
+
class MetadataManager:
|
750 |
+
"""
|
751 |
+
Manager for extracting and parsing image metadata.
|
752 |
+
"""
|
753 |
+
|
754 |
+
def __init__(self):
|
755 |
+
pass
|
756 |
+
|
757 |
+
def extract_metadata(self, image_path_or_pil):
|
758 |
+
"""
|
759 |
+
Extract metadata from an image.
|
760 |
+
|
761 |
+
Args:
|
762 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
763 |
+
|
764 |
+
Returns:
|
765 |
+
dict: Dictionary containing extracted metadata.
|
766 |
+
"""
|
767 |
+
try:
|
768 |
+
# Load image if path is provided
|
769 |
+
if isinstance(image_path_or_pil, str):
|
770 |
+
img = Image.open(image_path_or_pil)
|
771 |
+
else:
|
772 |
+
img = image_path_or_pil
|
773 |
+
|
774 |
+
# Initialize metadata dictionary
|
775 |
+
metadata = {
|
776 |
+
'has_metadata': False,
|
777 |
+
'prompt': None,
|
778 |
+
'negative_prompt': None,
|
779 |
+
'steps': None,
|
780 |
+
'sampler': None,
|
781 |
+
'cfg_scale': None,
|
782 |
+
'seed': None,
|
783 |
+
'size': None,
|
784 |
+
'model': None,
|
785 |
+
'raw_metadata': None
|
786 |
+
}
|
787 |
+
|
788 |
+
# Check for PNG info metadata (Stable Diffusion WebUI)
|
789 |
+
if 'parameters' in img.info:
|
790 |
+
metadata['has_metadata'] = True
|
791 |
+
metadata['raw_metadata'] = img.info['parameters']
|
792 |
+
|
793 |
+
# Parse parameters
|
794 |
+
params = img.info['parameters']
|
795 |
+
|
796 |
+
# Extract prompt and negative prompt
|
797 |
+
neg_prompt_prefix = "Negative prompt:"
|
798 |
+
if neg_prompt_prefix in params:
|
799 |
+
parts = params.split(neg_prompt_prefix, 1)
|
800 |
+
metadata['prompt'] = parts[0].strip()
|
801 |
+
rest = parts[1].strip()
|
802 |
+
|
803 |
+
# Find the next parameter after negative prompt
|
804 |
+
next_param_match = re.search(r'\n(Steps: |Sampler: |CFG scale: |Seed: |Size: |Model: )', rest)
|
805 |
+
if next_param_match:
|
806 |
+
neg_end = next_param_match.start()
|
807 |
+
metadata['negative_prompt'] = rest[:neg_end].strip()
|
808 |
+
rest = rest[neg_end:].strip()
|
809 |
+
else:
|
810 |
+
metadata['negative_prompt'] = rest
|
811 |
+
else:
|
812 |
+
metadata['prompt'] = params
|
813 |
+
|
814 |
+
# Extract other parameters
|
815 |
+
for param in ['Steps', 'Sampler', 'CFG scale', 'Seed', 'Size', 'Model']:
|
816 |
+
param_match = re.search(rf'{param}: ([^,\n]+)', params)
|
817 |
+
if param_match:
|
818 |
+
param_key = param.lower().replace(' ', '_')
|
819 |
+
metadata[param_key] = param_match.group(1).strip()
|
820 |
+
|
821 |
+
# Check for EXIF metadata
|
822 |
+
elif hasattr(img, '_getexif') and img._getexif():
|
823 |
+
exif = {
|
824 |
+
ExifTags.TAGS[k]: v
|
825 |
+
for k, v in img._getexif().items()
|
826 |
+
if k in ExifTags.TAGS
|
827 |
+
}
|
828 |
+
|
829 |
+
if 'ImageDescription' in exif and exif['ImageDescription']:
|
830 |
+
metadata['has_metadata'] = True
|
831 |
+
metadata['raw_metadata'] = exif['ImageDescription']
|
832 |
+
|
833 |
+
# Try to parse as JSON
|
834 |
+
try:
|
835 |
+
json_data = json.loads(exif['ImageDescription'])
|
836 |
+
if 'prompt' in json_data:
|
837 |
+
metadata['prompt'] = json_data['prompt']
|
838 |
+
if 'negative_prompt' in json_data:
|
839 |
+
metadata['negative_prompt'] = json_data['negative_prompt']
|
840 |
+
|
841 |
+
# Map other parameters
|
842 |
+
param_mapping = {
|
843 |
+
'steps': 'steps',
|
844 |
+
'sampler': 'sampler',
|
845 |
+
'cfg_scale': 'cfg_scale',
|
846 |
+
'seed': 'seed',
|
847 |
+
'width': 'width',
|
848 |
+
'height': 'height',
|
849 |
+
'model': 'model'
|
850 |
+
}
|
851 |
+
|
852 |
+
for json_key, meta_key in param_mapping.items():
|
853 |
+
if json_key in json_data:
|
854 |
+
metadata[meta_key] = json_data[json_key]
|
855 |
+
|
856 |
+
# Combine width and height for size
|
857 |
+
if 'width' in json_data and 'height' in json_data:
|
858 |
+
metadata['size'] = f"{json_data['width']}x{json_data['height']}"
|
859 |
+
except json.JSONDecodeError:
|
860 |
+
# Not JSON, try to parse as text
|
861 |
+
desc = exif['ImageDescription']
|
862 |
+
metadata['prompt'] = desc
|
863 |
+
|
864 |
+
# If no metadata found but image has dimensions, add them
|
865 |
+
if not metadata['size'] and hasattr(img, 'width') and hasattr(img, 'height'):
|
866 |
+
metadata['size'] = f"{img.width}x{img.height}"
|
867 |
+
|
868 |
+
return metadata
|
869 |
+
|
870 |
+
except Exception as e:
|
871 |
+
print(f"Error extracting metadata: {e}")
|
872 |
+
return {
|
873 |
+
'has_metadata': False,
|
874 |
+
'error': str(e)
|
875 |
+
}
|
876 |
+
|
877 |
+
def update_metadata(self, image, new_metadata):
|
878 |
+
"""
|
879 |
+
Update the metadata in an image.
|
880 |
+
|
881 |
+
Args:
|
882 |
+
image: PIL Image.
|
883 |
+
new_metadata: New metadata string.
|
884 |
+
|
885 |
+
Returns:
|
886 |
+
PIL Image: Image with updated metadata.
|
887 |
+
"""
|
888 |
+
if image:
|
889 |
+
try:
|
890 |
+
# Create a PngInfo object to store metadata
|
891 |
+
pnginfo = PngImagePlugin.PngInfo()
|
892 |
+
pnginfo.add_text("parameters", new_metadata)
|
893 |
+
|
894 |
+
# Save the image to a BytesIO object with the updated metadata
|
895 |
+
output_bytes = BytesIO()
|
896 |
+
image.save(output_bytes, format="PNG", pnginfo=pnginfo)
|
897 |
+
output_bytes.seek(0)
|
898 |
+
|
899 |
+
# Re-open the image from the BytesIO object
|
900 |
+
updated_image = Image.open(output_bytes)
|
901 |
+
|
902 |
+
return updated_image
|
903 |
+
except Exception as e:
|
904 |
+
print(f"Error updating metadata: {e}")
|
905 |
+
return image
|
906 |
+
else:
|
907 |
+
return None
|
908 |
+
|
909 |
+
|
910 |
+
#####################################
|
911 |
+
# Evaluator Manager Class #
|
912 |
+
#####################################
|
913 |
+
|
914 |
class EvaluatorManager:
|
915 |
"""
|
916 |
Manager class for handling multiple evaluators.
|
|
|
920 |
def __init__(self):
|
921 |
"""Initialize the evaluator manager with available evaluators."""
|
922 |
self.evaluators = {}
|
923 |
+
self.metadata_manager = MetadataManager()
|
924 |
self._register_default_evaluators()
|
925 |
|
926 |
def _register_default_evaluators(self):
|
927 |
"""Register the default set of evaluators."""
|
928 |
self.register_evaluator(TechnicalEvaluator())
|
929 |
self.register_evaluator(AestheticEvaluator())
|
930 |
+
self.register_evaluator(AnimeEvaluator())
|
931 |
|
932 |
def register_evaluator(self, evaluator):
|
933 |
"""
|
934 |
Register a new evaluator.
|
935 |
|
936 |
Args:
|
937 |
+
evaluator: The evaluator to register.
|
938 |
"""
|
|
|
|
|
|
|
939 |
metadata = evaluator.get_metadata()
|
940 |
self.evaluators[metadata['id']] = evaluator
|
941 |
|
|
|
948 |
"""
|
949 |
return [evaluator.get_metadata() for evaluator in self.evaluators.values()]
|
950 |
|
951 |
+
def evaluate_image(self, image_path_or_pil, evaluator_ids=None):
|
952 |
"""
|
953 |
Evaluate an image using specified evaluators.
|
954 |
|
955 |
Args:
|
956 |
+
image_path_or_pil: Path to the image file or PIL Image.
|
957 |
+
evaluator_ids: List of evaluator IDs to use.
|
958 |
If None, all available evaluators will be used.
|
959 |
|
960 |
Returns:
|
961 |
dict: Dictionary containing evaluation results from each evaluator.
|
962 |
"""
|
963 |
+
# Check if image exists
|
964 |
+
if isinstance(image_path_or_pil, str) and not os.path.exists(image_path_or_pil):
|
965 |
+
return {'error': f'Image file not found: {image_path_or_pil}'}
|
966 |
|
967 |
if evaluator_ids is None:
|
968 |
evaluator_ids = list(self.evaluators.keys())
|
969 |
|
970 |
results = {}
|
971 |
+
|
972 |
+
# Extract metadata
|
973 |
+
metadata = self.metadata_manager.extract_metadata(image_path_or_pil)
|
974 |
+
results['metadata'] = metadata
|
975 |
+
|
976 |
+
# Evaluate with each evaluator
|
977 |
for evaluator_id in evaluator_ids:
|
978 |
if evaluator_id in self.evaluators:
|
979 |
+
results[evaluator_id] = self.evaluators[evaluator_id].evaluate(image_path_or_pil)
|
980 |
else:
|
981 |
results[evaluator_id] = {'error': f'Evaluator not found: {evaluator_id}'}
|
982 |
|
983 |
return results
|
984 |
|
985 |
+
def batch_evaluate_images(self, image_paths_or_pils, evaluator_ids=None):
|
986 |
"""
|
987 |
Evaluate multiple images using specified evaluators.
|
988 |
|
989 |
Args:
|
990 |
+
image_paths_or_pils: List of paths to image files or PIL Images.
|
991 |
+
evaluator_ids: List of evaluator IDs to use.
|
992 |
If None, all available evaluators will be used.
|
993 |
|
994 |
Returns:
|
995 |
list: List of dictionaries containing evaluation results for each image.
|
996 |
"""
|
997 |
+
return [self.evaluate_image(path_or_pil, evaluator_ids) for path_or_pil in image_paths_or_pils]
|
998 |
|
999 |
def compare_models(self, model_results):
|
1000 |
"""
|
1001 |
Compare different models based on evaluation results.
|
1002 |
|
1003 |
Args:
|
1004 |
+
model_results: Dictionary mapping model names to their evaluation results.
|
1005 |
|
1006 |
Returns:
|
1007 |
dict: Comparison results including rankings and best model.
|
|
|
1077 |
'comparison_metrics': comparison_metrics
|
1078 |
}
|
1079 |
|
1080 |
+
|
1081 |
+
#####################################
|
1082 |
+
# Model Manager Class #
|
1083 |
+
#####################################
|
1084 |
+
|
1085 |
+
class ModelManager:
|
1086 |
+
"""
|
1087 |
+
Manages model loading and processing requests using a queue.
|
1088 |
+
"""
|
1089 |
+
def __init__(self):
|
1090 |
+
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
1091 |
+
print(f"Using device: {self.device}")
|
1092 |
+
|
1093 |
+
# Initialize evaluator manager
|
1094 |
+
self.evaluator_manager = EvaluatorManager()
|
1095 |
+
|
1096 |
+
# Initialize processing queue
|
1097 |
+
self.processing_queue = asyncio.Queue()
|
1098 |
+
self.worker_task = None
|
1099 |
+
|
1100 |
+
# Create temp directory
|
1101 |
+
self.temp_dir = tempfile.mkdtemp()
|
1102 |
+
|
1103 |
+
async def start_worker(self):
|
1104 |
+
"""Start the background worker task."""
|
1105 |
+
if self.worker_task is None:
|
1106 |
+
self.worker_task = asyncio.create_task(self._worker())
|
1107 |
+
|
1108 |
+
async def _worker(self):
|
1109 |
+
"""Background worker to process image evaluation requests from the queue."""
|
1110 |
+
while True:
|
1111 |
+
request = await self.processing_queue.get()
|
1112 |
+
if request is None: # Shutdown signal
|
1113 |
+
self.processing_queue.task_done()
|
1114 |
+
break
|
1115 |
+
try:
|
1116 |
+
results = await self._process_request(request)
|
1117 |
+
request['results_future'].set_result(results) # Fulfill the future with results
|
1118 |
+
except Exception as e:
|
1119 |
+
request['results_future'].set_exception(e) # Set exception if processing fails
|
1120 |
+
finally:
|
1121 |
+
self.processing_queue.task_done()
|
1122 |
+
|
1123 |
+
async def submit_request(self, request_data):
|
1124 |
+
"""Submit a new image processing request to the queue."""
|
1125 |
+
results_future = asyncio.Future() # Future to hold the results
|
1126 |
+
request = {**request_data, 'results_future': results_future}
|
1127 |
+
await self.processing_queue.put(request)
|
1128 |
+
return await results_future # Wait for and return results
|
1129 |
+
|
1130 |
+
async def _process_request(self, request):
|
1131 |
+
"""Process a single image evaluation request."""
|
1132 |
+
file_paths = request['file_paths']
|
1133 |
+
auto_batch = request['auto_batch']
|
1134 |
+
manual_batch_size = request['manual_batch_size']
|
1135 |
+
selected_evaluators = request['selected_evaluators']
|
1136 |
+
log_events = []
|
1137 |
+
images = []
|
1138 |
+
file_names = []
|
1139 |
+
final_results = []
|
1140 |
+
|
1141 |
+
# Prepare images and file names
|
1142 |
+
total_files = len(file_paths)
|
1143 |
+
log_events.append(f"Starting to load {total_files} images...")
|
1144 |
+
for f in file_paths:
|
1145 |
+
try:
|
1146 |
+
img = Image.open(f).convert("RGB")
|
1147 |
+
images.append(img)
|
1148 |
+
file_names.append(os.path.basename(f))
|
1149 |
+
except Exception as e:
|
1150 |
+
log_events.append(f"Error opening {f}: {e}")
|
1151 |
+
|
1152 |
+
if not images:
|
1153 |
+
log_events.append("No valid images loaded.")
|
1154 |
+
return [], log_events, 0, manual_batch_size
|
1155 |
+
|
1156 |
+
log_events.append("Images loaded. Determining batch size...")
|
1157 |
+
|
1158 |
+
try:
|
1159 |
+
manual_batch_size = int(manual_batch_size) if manual_batch_size is not None else 1
|
1160 |
+
except ValueError:
|
1161 |
+
manual_batch_size = 1
|
1162 |
+
log_events.append("Invalid manual batch size. Defaulting to 1.")
|
1163 |
+
|
1164 |
+
optimal_batch = self.auto_tune_batch_size(images) if auto_batch else manual_batch_size
|
1165 |
+
log_events.append(f"Using batch size: {optimal_batch}")
|
1166 |
+
|
1167 |
+
total_images = len(images)
|
1168 |
+
for i in range(0, total_images, optimal_batch):
|
1169 |
+
batch_images = images[i:i+optimal_batch]
|
1170 |
+
batch_file_paths = file_paths[i:i+optimal_batch]
|
1171 |
+
batch_file_names = file_names[i:i+optimal_batch]
|
1172 |
+
batch_index = i // optimal_batch + 1
|
1173 |
+
log_events.append(f"Processing batch {batch_index}: images {i+1} to {min(i+optimal_batch, total_images)}")
|
1174 |
+
|
1175 |
+
# Process each image in the batch
|
1176 |
+
for j, (img, img_path, img_name) in enumerate(zip(batch_images, batch_file_paths, batch_file_names)):
|
1177 |
+
# Evaluate image with selected evaluators
|
1178 |
+
evaluation_results = self.evaluator_manager.evaluate_image(img_path, selected_evaluators)
|
1179 |
+
|
1180 |
+
# Extract metadata
|
1181 |
+
metadata = evaluation_results.get('metadata', {})
|
1182 |
+
|
1183 |
+
# Calculate final score
|
1184 |
+
scores_to_average = []
|
1185 |
+
for evaluator_id in selected_evaluators:
|
1186 |
+
if evaluator_id in evaluation_results:
|
1187 |
+
if evaluator_id == 'technical' and 'overall_technical' in evaluation_results[evaluator_id]:
|
1188 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_technical'])
|
1189 |
+
elif evaluator_id == 'aesthetic' and 'overall_aesthetic' in evaluation_results[evaluator_id]:
|
1190 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_aesthetic'])
|
1191 |
+
elif evaluator_id == 'anime_specialized' and 'overall_anime' in evaluation_results[evaluator_id]:
|
1192 |
+
scores_to_average.append(evaluation_results[evaluator_id]['overall_anime'])
|
1193 |
+
|
1194 |
+
final_score = float(np.clip(np.mean(scores_to_average), 0.0, 10.0)) if scores_to_average else 5.0
|
1195 |
+
|
1196 |
+
# Create thumbnail
|
1197 |
+
thumbnail = img.copy()
|
1198 |
+
thumbnail.thumbnail((200, 200))
|
1199 |
+
|
1200 |
+
# Create result
|
1201 |
+
result = {
|
1202 |
+
'file_name': img_name,
|
1203 |
+
'file_path': img_path,
|
1204 |
+
'img_data': self.image_to_base64(thumbnail),
|
1205 |
+
'final_score': final_score,
|
1206 |
+
'metadata': metadata,
|
1207 |
+
}
|
1208 |
+
|
1209 |
+
# Add evaluator results
|
1210 |
+
for evaluator_id in selected_evaluators:
|
1211 |
+
if evaluator_id in evaluation_results:
|
1212 |
+
result[evaluator_id] = evaluation_results[evaluator_id]
|
1213 |
+
|
1214 |
+
final_results.append(result)
|
1215 |
+
|
1216 |
+
log_events.append("All images processed.")
|
1217 |
+
return final_results, log_events, 100, optimal_batch
|
1218 |
+
|
1219 |
+
def image_to_base64(self, image: Image.Image) -> str:
|
1220 |
+
"""Convert PIL Image to base64 encoded JPEG string."""
|
1221 |
+
buffered = BytesIO()
|
1222 |
+
image.save(buffered, format="JPEG")
|
1223 |
+
return base64.b64encode(buffered.getvalue()).decode('utf-8')
|
1224 |
+
|
1225 |
+
def auto_tune_batch_size(self, images: list) -> int:
|
1226 |
+
"""Automatically determine the optimal batch size for processing."""
|
1227 |
+
# For simplicity, use a fixed batch size
|
1228 |
+
# In a real implementation, this would test different batch sizes
|
1229 |
+
return min(4, len(images))
|
1230 |
+
|
1231 |
+
|
1232 |
+
#####################################
|
1233 |
+
# Gradio Interface #
|
1234 |
+
#####################################
|
1235 |
+
|
1236 |
+
# Initialize evaluator manager and model manager
|
1237 |
evaluator_manager = EvaluatorManager()
|
1238 |
+
model_manager = ModelManager()
|
1239 |
|
1240 |
# Global variables to store uploaded images and results
|
1241 |
uploaded_images = {}
|
1242 |
evaluation_results = {}
|
1243 |
|
1244 |
+
def extract_metadata_from_image(image):
|
1245 |
+
"""
|
1246 |
+
Extract metadata from an uploaded image.
|
1247 |
+
|
1248 |
+
Args:
|
1249 |
+
image: Uploaded image.
|
1250 |
+
|
1251 |
+
Returns:
|
1252 |
+
tuple: (image, metadata)
|
1253 |
+
"""
|
1254 |
+
if image is None:
|
1255 |
+
return None, ""
|
1256 |
+
|
1257 |
+
metadata_manager = MetadataManager()
|
1258 |
+
metadata = metadata_manager.extract_metadata(image)
|
1259 |
+
|
1260 |
+
if metadata['has_metadata']:
|
1261 |
+
return image, metadata['raw_metadata'] or ""
|
1262 |
+
else:
|
1263 |
+
return image, "No metadata found in image."
|
1264 |
+
|
1265 |
+
def update_image_metadata(image, new_metadata):
|
1266 |
+
"""
|
1267 |
+
Update metadata in an image.
|
1268 |
+
|
1269 |
+
Args:
|
1270 |
+
image: Image to update.
|
1271 |
+
new_metadata: New metadata string.
|
1272 |
+
|
1273 |
+
Returns:
|
1274 |
+
tuple: (updated_image, metadata)
|
1275 |
+
"""
|
1276 |
+
if image is None:
|
1277 |
+
return None, ""
|
1278 |
+
|
1279 |
+
metadata_manager = MetadataManager()
|
1280 |
+
updated_image = metadata_manager.update_metadata(image, new_metadata)
|
1281 |
+
|
1282 |
+
return updated_image, new_metadata
|
1283 |
+
|
1284 |
def evaluate_images(images, model_name, selected_evaluators):
|
1285 |
"""
|
1286 |
Evaluate uploaded images using selected evaluators.
|
1287 |
|
1288 |
Args:
|
1289 |
+
images: List of uploaded image files.
|
1290 |
+
model_name: Name of the model that generated these images.
|
1291 |
+
selected_evaluators: List of evaluator IDs to use.
|
1292 |
|
1293 |
Returns:
|
1294 |
+
str: Status message.
|
1295 |
"""
|
1296 |
global uploaded_images, evaluation_results
|
1297 |
|
|
|
1337 |
|
1338 |
return f"Evaluated {len(images)} images for model '{model_name}'."
|
1339 |
|
1340 |
+
async def evaluate_images_async(images, model_name, selected_evaluators, auto_batch=True, batch_size=4):
|
1341 |
+
"""
|
1342 |
+
Asynchronously evaluate uploaded images using selected evaluators.
|
1343 |
+
|
1344 |
+
Args:
|
1345 |
+
images: List of uploaded image files.
|
1346 |
+
model_name: Name of the model that generated these images.
|
1347 |
+
selected_evaluators: List of evaluator IDs to use.
|
1348 |
+
auto_batch: Whether to automatically determine batch size.
|
1349 |
+
batch_size: Manual batch size if auto_batch is False.
|
1350 |
+
|
1351 |
+
Returns:
|
1352 |
+
tuple: (results, log, progress, batch_size)
|
1353 |
+
"""
|
1354 |
+
if not images:
|
1355 |
+
return [], ["No images uploaded."], 0, batch_size
|
1356 |
+
|
1357 |
+
if not model_name:
|
1358 |
+
model_name = "unknown_model"
|
1359 |
+
|
1360 |
+
# Start worker if not already running
|
1361 |
+
await model_manager.start_worker()
|
1362 |
+
|
1363 |
+
# Prepare request
|
1364 |
+
request_data = {
|
1365 |
+
'file_paths': images,
|
1366 |
+
'auto_batch': auto_batch,
|
1367 |
+
'manual_batch_size': batch_size,
|
1368 |
+
'selected_evaluators': selected_evaluators
|
1369 |
+
}
|
1370 |
+
|
1371 |
+
# Submit request and wait for results
|
1372 |
+
results, log_events, progress, actual_batch_size = await model_manager.submit_request(request_data)
|
1373 |
+
|
1374 |
+
# Store results in global variable
|
1375 |
+
if results:
|
1376 |
+
global evaluation_results
|
1377 |
+
if model_name not in evaluation_results:
|
1378 |
+
evaluation_results[model_name] = {}
|
1379 |
+
|
1380 |
+
for result in results:
|
1381 |
+
img_id = f"{model_name}_{os.path.basename(result['file_path'])}"
|
1382 |
+
evaluation_data = {
|
1383 |
+
'metadata': result.get('metadata', {}),
|
1384 |
+
'technical': result.get('technical', {}),
|
1385 |
+
'aesthetic': result.get('aesthetic', {}),
|
1386 |
+
'anime_specialized': result.get('anime_specialized', {})
|
1387 |
+
}
|
1388 |
+
evaluation_results[model_name][img_id] = evaluation_data
|
1389 |
+
|
1390 |
+
# Create results table HTML
|
1391 |
+
results_table_html = create_results_table(results)
|
1392 |
+
|
1393 |
+
return results_table_html, log_events, progress, actual_batch_size
|
1394 |
+
|
1395 |
def compare_models():
|
1396 |
"""
|
1397 |
Compare models based on evaluation results.
|
|
|
1445 |
plt.title('Overall Quality Scores by Model')
|
1446 |
plt.xlabel('Model')
|
1447 |
plt.ylabel('Score')
|
1448 |
+
plt.ylim(0, 10.5)
|
1449 |
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
1450 |
|
1451 |
# Save the chart
|
|
|
1480 |
plt.xticks(angles[:-1], categories)
|
1481 |
|
1482 |
# Set y-axis limits
|
1483 |
+
ax.set_ylim(0, 10)
|
1484 |
|
1485 |
# Add legend
|
1486 |
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
|
|
1499 |
|
1500 |
return result_message, overall_chart_path, radar_chart_path
|
1501 |
|
1502 |
+
def create_results_table(results):
|
1503 |
+
"""
|
1504 |
+
Create an HTML table with results and image previews.
|
1505 |
+
|
1506 |
+
Args:
|
1507 |
+
results: List of evaluation results.
|
1508 |
+
|
1509 |
+
Returns:
|
1510 |
+
str: HTML table.
|
1511 |
+
"""
|
1512 |
+
if not results:
|
1513 |
+
return "No results to display."
|
1514 |
+
|
1515 |
+
# Sort results by final score (descending)
|
1516 |
+
sorted_results = sorted(results, key=lambda x: x.get('final_score', 0), reverse=True)
|
1517 |
+
|
1518 |
+
# Create HTML table
|
1519 |
+
html = """
|
1520 |
+
<style>
|
1521 |
+
.results-table {
|
1522 |
+
width: 100%;
|
1523 |
+
border-collapse: collapse;
|
1524 |
+
font-family: Arial, sans-serif;
|
1525 |
+
}
|
1526 |
+
.results-table th, .results-table td {
|
1527 |
+
border: 1px solid #ddd;
|
1528 |
+
padding: 8px;
|
1529 |
+
text-align: left;
|
1530 |
+
}
|
1531 |
+
.results-table th {
|
1532 |
+
background-color: #f2f2f2;
|
1533 |
+
position: sticky;
|
1534 |
+
top: 0;
|
1535 |
+
}
|
1536 |
+
.results-table tr:nth-child(even) {
|
1537 |
+
background-color: #f9f9f9;
|
1538 |
+
}
|
1539 |
+
.results-table tr:hover {
|
1540 |
+
background-color: #f1f1f1;
|
1541 |
+
}
|
1542 |
+
.image-preview {
|
1543 |
+
max-width: 150px;
|
1544 |
+
max-height: 150px;
|
1545 |
+
}
|
1546 |
+
.score {
|
1547 |
+
font-weight: bold;
|
1548 |
+
}
|
1549 |
+
.high-score {
|
1550 |
+
color: green;
|
1551 |
+
}
|
1552 |
+
.medium-score {
|
1553 |
+
color: orange;
|
1554 |
+
}
|
1555 |
+
.low-score {
|
1556 |
+
color: red;
|
1557 |
+
}
|
1558 |
+
.metadata-cell {
|
1559 |
+
max-width: 300px;
|
1560 |
+
overflow: hidden;
|
1561 |
+
text-overflow: ellipsis;
|
1562 |
+
white-space: nowrap;
|
1563 |
+
}
|
1564 |
+
.metadata-cell:hover {
|
1565 |
+
white-space: normal;
|
1566 |
+
overflow: visible;
|
1567 |
+
}
|
1568 |
+
</style>
|
1569 |
+
<table class="results-table">
|
1570 |
+
<thead>
|
1571 |
+
<tr>
|
1572 |
+
<th>Preview</th>
|
1573 |
+
<th>File Name</th>
|
1574 |
+
<th>Final Score</th>
|
1575 |
+
<th>Technical</th>
|
1576 |
+
<th>Aesthetic</th>
|
1577 |
+
<th>Anime</th>
|
1578 |
+
<th>Prompt</th>
|
1579 |
+
</tr>
|
1580 |
+
</thead>
|
1581 |
+
<tbody>
|
1582 |
+
"""
|
1583 |
+
|
1584 |
+
for result in sorted_results:
|
1585 |
+
# Determine score class
|
1586 |
+
score = result.get('final_score', 0)
|
1587 |
+
if score >= 7.5:
|
1588 |
+
score_class = "high-score"
|
1589 |
+
elif score >= 5:
|
1590 |
+
score_class = "medium-score"
|
1591 |
+
else:
|
1592 |
+
score_class = "low-score"
|
1593 |
+
|
1594 |
+
# Get technical score
|
1595 |
+
technical_score = "N/A"
|
1596 |
+
if 'technical' in result and 'overall_technical' in result['technical']:
|
1597 |
+
technical_score = f"{result['technical']['overall_technical']:.2f}"
|
1598 |
+
|
1599 |
+
# Get aesthetic score
|
1600 |
+
aesthetic_score = "N/A"
|
1601 |
+
if 'aesthetic' in result and 'overall_aesthetic' in result['aesthetic']:
|
1602 |
+
aesthetic_score = f"{result['aesthetic']['overall_aesthetic']:.2f}"
|
1603 |
+
|
1604 |
+
# Get anime score
|
1605 |
+
anime_score = "N/A"
|
1606 |
+
if 'anime_specialized' in result and 'overall_anime' in result['anime_specialized']:
|
1607 |
+
anime_score = f"{result['anime_specialized']['overall_anime']:.2f}"
|
1608 |
+
|
1609 |
+
# Get prompt from metadata
|
1610 |
+
prompt = "N/A"
|
1611 |
+
if 'metadata' in result and result['metadata'].get('prompt'):
|
1612 |
+
prompt = result['metadata']['prompt']
|
1613 |
+
|
1614 |
+
# Add row to table
|
1615 |
+
html += f"""
|
1616 |
+
<tr>
|
1617 |
+
<td><img src="data:image/jpeg;base64,{result['img_data']}" class="image-preview"></td>
|
1618 |
+
<td>{result['file_name']}</td>
|
1619 |
+
<td class="score {score_class}">{score:.2f}</td>
|
1620 |
+
<td>{technical_score}</td>
|
1621 |
+
<td>{aesthetic_score}</td>
|
1622 |
+
<td>{anime_score}</td>
|
1623 |
+
<td class="metadata-cell">{prompt}</td>
|
1624 |
+
</tr>
|
1625 |
+
"""
|
1626 |
+
|
1627 |
+
html += """
|
1628 |
+
</tbody>
|
1629 |
+
</table>
|
1630 |
+
"""
|
1631 |
+
|
1632 |
+
return html
|
1633 |
+
|
1634 |
def export_results(format_type):
|
1635 |
"""
|
1636 |
Export evaluation results to file.
|
1637 |
|
1638 |
Args:
|
1639 |
+
format_type: Export format ('csv', 'json', 'html', or 'markdown').
|
1640 |
|
1641 |
Returns:
|
1642 |
+
str: Path to exported file.
|
1643 |
"""
|
1644 |
global evaluation_results
|
1645 |
|
|
|
1688 |
for img_id, results in evaluation_results[model].items():
|
1689 |
row = {'Image': img_id}
|
1690 |
|
1691 |
+
# Add metadata if available
|
1692 |
+
if 'metadata' in results and results['metadata'].get('prompt'):
|
1693 |
+
row['Prompt'] = results['metadata']['prompt']
|
1694 |
+
|
1695 |
+
# Add evaluator results
|
1696 |
+
for evaluator_id in ['technical', 'aesthetic', 'anime_specialized']:
|
1697 |
+
if evaluator_id in results:
|
1698 |
+
for metric, value in results[evaluator_id].items():
|
1699 |
+
if isinstance(value, (int, float)):
|
1700 |
+
row[f"{evaluator_id}_{metric}"] = value
|
1701 |
|
1702 |
data.append(row)
|
1703 |
|
|
|
1722 |
json.dump(export_data, f, indent=2)
|
1723 |
elif format_type == 'html':
|
1724 |
output_path = os.path.join(output_dir, 'evaluation_results.html')
|
1725 |
+
|
1726 |
+
# Create HTML with both table and visualizations
|
1727 |
+
html_content = """
|
1728 |
+
<!DOCTYPE html>
|
1729 |
+
<html>
|
1730 |
+
<head>
|
1731 |
+
<title>Image Evaluation Results</title>
|
1732 |
+
<style>
|
1733 |
+
body { font-family: Arial, sans-serif; margin: 20px; }
|
1734 |
+
h1, h2 { color: #333; }
|
1735 |
+
.container { margin-bottom: 30px; }
|
1736 |
+
table { border-collapse: collapse; width: 100%; }
|
1737 |
+
th, td { border: 1px solid #ddd; padding: 8px; text-align: left; }
|
1738 |
+
th { background-color: #f2f2f2; }
|
1739 |
+
tr:nth-child(even) { background-color: #f9f9f9; }
|
1740 |
+
.chart { margin: 20px 0; max-width: 800px; }
|
1741 |
+
.best-model { font-weight: bold; color: green; }
|
1742 |
+
</style>
|
1743 |
+
</head>
|
1744 |
+
<body>
|
1745 |
+
<h1>Image Evaluation Results</h1>
|
1746 |
+
"""
|
1747 |
+
|
1748 |
+
if comparison:
|
1749 |
+
html_content += f"""
|
1750 |
+
<div class="container">
|
1751 |
+
<h2>Model Comparison</h2>
|
1752 |
+
<p class="best-model">Best model: {comparison['best_model']}</p>
|
1753 |
+
<table>
|
1754 |
+
<tr>
|
1755 |
+
<th>Rank</th>
|
1756 |
+
<th>Model</th>
|
1757 |
+
<th>Overall Score</th>
|
1758 |
+
<th>Technical</th>
|
1759 |
+
<th>Aesthetic</th>
|
1760 |
+
<th>Anime</th>
|
1761 |
+
</tr>
|
1762 |
+
"""
|
1763 |
+
|
1764 |
+
for rank in comparison['rankings']:
|
1765 |
+
model = rank['model']
|
1766 |
+
html_content += f"""
|
1767 |
+
<tr>
|
1768 |
+
<td>{rank['rank']}</td>
|
1769 |
+
<td>{model}</td>
|
1770 |
+
<td>{rank['score']:.2f}</td>
|
1771 |
+
<td>{comparison['comparison_metrics']['technical'].get(model, 0):.2f}</td>
|
1772 |
+
<td>{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f}</td>
|
1773 |
+
<td>{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f}</td>
|
1774 |
+
</tr>
|
1775 |
+
"""
|
1776 |
+
|
1777 |
+
html_content += """
|
1778 |
+
</table>
|
1779 |
+
</div>
|
1780 |
+
"""
|
1781 |
+
|
1782 |
+
# Add charts
|
1783 |
+
html_content += """
|
1784 |
+
<div class="container">
|
1785 |
+
<h2>Visualizations</h2>
|
1786 |
+
<div class="chart">
|
1787 |
+
<h3>Overall Scores</h3>
|
1788 |
+
<img src="overall_comparison.png" alt="Overall Scores Chart">
|
1789 |
+
</div>
|
1790 |
+
<div class="chart">
|
1791 |
+
<h3>Detailed Metrics</h3>
|
1792 |
+
<img src="radar_comparison.png" alt="Radar Chart">
|
1793 |
+
</div>
|
1794 |
+
</div>
|
1795 |
+
"""
|
1796 |
+
|
1797 |
+
# Save charts
|
1798 |
+
plt.figure(figsize=(10, 6))
|
1799 |
+
overall_scores = [comparison['comparison_metrics']['overall'].get(model, 0) for model in models]
|
1800 |
+
bars = plt.bar(models, overall_scores, color='skyblue')
|
1801 |
+
for bar in bars:
|
1802 |
+
height = bar.get_height()
|
1803 |
+
plt.text(bar.get_x() + bar.get_width()/2., height + 0.01, f'{height:.2f}', ha='center', va='bottom')
|
1804 |
+
plt.title('Overall Quality Scores by Model')
|
1805 |
+
plt.xlabel('Model')
|
1806 |
+
plt.ylabel('Score')
|
1807 |
+
plt.ylim(0, 10.5)
|
1808 |
+
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
1809 |
+
plt.savefig(os.path.join(output_dir, 'overall_comparison.png'))
|
1810 |
+
plt.close()
|
1811 |
+
|
1812 |
+
# Create radar chart
|
1813 |
+
categories = [m.capitalize() for m in metrics[:-1]]
|
1814 |
+
N = len(categories)
|
1815 |
+
angles = [n / float(N) * 2 * np.pi for n in range(N)]
|
1816 |
+
angles += angles[:1]
|
1817 |
+
plt.figure(figsize=(10, 10))
|
1818 |
+
ax = plt.subplot(111, polar=True)
|
1819 |
+
colors = plt.cm.tab10(np.linspace(0, 1, len(models)))
|
1820 |
+
for i, model in enumerate(models):
|
1821 |
+
values = [comparison['comparison_metrics'][metric].get(model, 0) for metric in metrics[:-1]]
|
1822 |
+
values += values[:1]
|
1823 |
+
ax.plot(angles, values, linewidth=2, linestyle='solid', label=model, color=colors[i])
|
1824 |
+
ax.fill(angles, values, alpha=0.1, color=colors[i])
|
1825 |
+
plt.xticks(angles[:-1], categories)
|
1826 |
+
ax.set_ylim(0, 10)
|
1827 |
+
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
|
1828 |
+
plt.title('Detailed Metrics Comparison by Model')
|
1829 |
+
plt.savefig(os.path.join(output_dir, 'radar_comparison.png'))
|
1830 |
+
plt.close()
|
1831 |
+
|
1832 |
+
# Add detailed results for each model
|
1833 |
+
for model in models:
|
1834 |
+
html_content += f"""
|
1835 |
+
<div class="container">
|
1836 |
+
<h2>Detailed Results: {model}</h2>
|
1837 |
+
<table>
|
1838 |
+
<tr>
|
1839 |
+
<th>Image</th>
|
1840 |
+
<th>Technical</th>
|
1841 |
+
<th>Aesthetic</th>
|
1842 |
+
<th>Anime</th>
|
1843 |
+
<th>Prompt</th>
|
1844 |
+
</tr>
|
1845 |
+
"""
|
1846 |
+
|
1847 |
+
for img_id, results in evaluation_results[model].items():
|
1848 |
+
technical = results.get('technical', {}).get('overall_technical', 'N/A')
|
1849 |
+
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
|
1850 |
+
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
|
1851 |
+
prompt = results.get('metadata', {}).get('prompt', 'N/A')
|
1852 |
+
|
1853 |
+
if isinstance(technical, (int, float)):
|
1854 |
+
technical = f"{technical:.2f}"
|
1855 |
+
if isinstance(aesthetic, (int, float)):
|
1856 |
+
aesthetic = f"{aesthetic:.2f}"
|
1857 |
+
if isinstance(anime, (int, float)):
|
1858 |
+
anime = f"{anime:.2f}"
|
1859 |
+
|
1860 |
+
html_content += f"""
|
1861 |
+
<tr>
|
1862 |
+
<td>{img_id}</td>
|
1863 |
+
<td>{technical}</td>
|
1864 |
+
<td>{aesthetic}</td>
|
1865 |
+
<td>{anime}</td>
|
1866 |
+
<td>{prompt}</td>
|
1867 |
+
</tr>
|
1868 |
+
"""
|
1869 |
+
|
1870 |
+
html_content += """
|
1871 |
+
</table>
|
1872 |
+
</div>
|
1873 |
+
"""
|
1874 |
+
|
1875 |
+
html_content += """
|
1876 |
+
</body>
|
1877 |
+
</html>
|
1878 |
+
"""
|
1879 |
+
|
1880 |
+
with open(output_path, 'w') as f:
|
1881 |
+
f.write(html_content)
|
1882 |
+
elif format_type == 'markdown':
|
1883 |
+
output_path = os.path.join(output_dir, 'evaluation_results.md')
|
1884 |
+
|
1885 |
+
md_content = "# Image Evaluation Results\n\n"
|
1886 |
+
|
1887 |
+
if comparison:
|
1888 |
+
md_content += f"## Model Comparison\n\n**Best model: {comparison['best_model']}**\n\n"
|
1889 |
+
md_content += "| Rank | Model | Overall Score | Technical | Aesthetic | Anime |\n"
|
1890 |
+
md_content += "|------|-------|--------------|-----------|-----------|-------|\n"
|
1891 |
+
|
1892 |
+
for rank in comparison['rankings']:
|
1893 |
+
model = rank['model']
|
1894 |
+
md_content += f"| {rank['rank']} | {model} | {rank['score']:.2f} | "
|
1895 |
+
md_content += f"{comparison['comparison_metrics']['technical'].get(model, 0):.2f} | "
|
1896 |
+
md_content += f"{comparison['comparison_metrics']['aesthetic'].get(model, 0):.2f} | "
|
1897 |
+
md_content += f"{comparison['comparison_metrics']['anime_specialized'].get(model, 0):.2f} |\n"
|
1898 |
+
|
1899 |
+
md_content += "\n"
|
1900 |
+
|
1901 |
+
# Add detailed results for each model
|
1902 |
+
for model in models:
|
1903 |
+
md_content += f"## Detailed Results: {model}\n\n"
|
1904 |
+
md_content += "| Image | Technical | Aesthetic | Anime | Prompt |\n"
|
1905 |
+
md_content += "|-------|-----------|-----------|-------|--------|\n"
|
1906 |
+
|
1907 |
+
for img_id, results in evaluation_results[model].items():
|
1908 |
+
technical = results.get('technical', {}).get('overall_technical', 'N/A')
|
1909 |
+
aesthetic = results.get('aesthetic', {}).get('overall_aesthetic', 'N/A')
|
1910 |
+
anime = results.get('anime_specialized', {}).get('overall_anime', 'N/A')
|
1911 |
+
prompt = results.get('metadata', {}).get('prompt', 'N/A')
|
1912 |
+
|
1913 |
+
if isinstance(technical, (int, float)):
|
1914 |
+
technical = f"{technical:.2f}"
|
1915 |
+
if isinstance(aesthetic, (int, float)):
|
1916 |
+
aesthetic = f"{aesthetic:.2f}"
|
1917 |
+
if isinstance(anime, (int, float)):
|
1918 |
+
anime = f"{anime:.2f}"
|
1919 |
+
|
1920 |
+
# Truncate prompt if too long
|
1921 |
+
if len(str(prompt)) > 50:
|
1922 |
+
prompt = str(prompt)[:47] + "..."
|
1923 |
+
|
1924 |
+
md_content += f"| {img_id} | {technical} | {aesthetic} | {anime} | {prompt} |\n"
|
1925 |
+
|
1926 |
+
md_content += "\n"
|
1927 |
+
|
1928 |
+
with open(output_path, 'w') as f:
|
1929 |
+
f.write(md_content)
|
1930 |
else:
|
1931 |
return f"Unsupported format: {format_type}"
|
1932 |
|
|
|
1951 |
|
1952 |
with gr.Tab("Upload & Evaluate"):
|
1953 |
with gr.Row():
|
1954 |
+
with gr.Column(scale=1):
|
1955 |
images_input = gr.File(file_count="multiple", label="Upload Images")
|
1956 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter model name")
|
1957 |
evaluator_select = gr.CheckboxGroup(choices=evaluator_choices, label="Select Evaluators", value=evaluator_choices)
|
1958 |
+
auto_batch = gr.Checkbox(label="Auto Batch Size", value=True)
|
1959 |
+
batch_size = gr.Number(label="Batch Size (if Auto is off)", value=4, precision=0)
|
1960 |
evaluate_button = gr.Button("Evaluate Images")
|
1961 |
|
1962 |
+
with gr.Column(scale=2):
|
1963 |
+
with gr.Row():
|
1964 |
+
evaluation_output = gr.Textbox(label="Evaluation Status")
|
1965 |
+
progress = gr.Number(label="Progress (%)", value=0, precision=0)
|
1966 |
+
|
1967 |
+
log_output = gr.Textbox(label="Processing Log", lines=10)
|
1968 |
+
results_table = gr.HTML(label="Results Table")
|
|
|
1969 |
|
1970 |
with gr.Tab("Compare Models"):
|
1971 |
with gr.Row():
|
|
|
1978 |
with gr.Column():
|
1979 |
overall_chart = gr.Image(label="Overall Scores")
|
1980 |
radar_chart = gr.Image(label="Detailed Metrics")
|
1981 |
+
|
1982 |
+
with gr.Tab("Metadata Viewer"):
|
1983 |
+
with gr.Row():
|
1984 |
+
with gr.Column():
|
1985 |
+
metadata_image_input = gr.Image(type="pil", label="Upload Image for Metadata")
|
1986 |
+
|
1987 |
+
with gr.Column():
|
1988 |
+
metadata_output = gr.Textbox(label="Image Metadata", lines=10)
|
1989 |
+
with gr.Row():
|
1990 |
+
copy_metadata_button = gr.Button("Copy Metadata")
|
1991 |
+
update_metadata_button = gr.Button("Update Metadata")
|
1992 |
|
1993 |
with gr.Tab("Export Results"):
|
1994 |
with gr.Row():
|
1995 |
+
format_select = gr.Radio(choices=["csv", "json", "html", "markdown"], label="Export Format", value="html")
|
1996 |
export_button = gr.Button("Export Results")
|
1997 |
|
1998 |
with gr.Row():
|
1999 |
export_output = gr.Textbox(label="Export Status")
|
|
|
|
|
|
|
|
|
|
|
|
|
2000 |
|
2001 |
with gr.Tab("Help"):
|
2002 |
gr.Markdown("""
|
|
|
2016 |
- The best model will be highlighted
|
2017 |
- View charts for visual comparison
|
2018 |
|
2019 |
+
### Step 3: View Metadata
|
2020 |
+
- Go to the "Metadata Viewer" tab
|
2021 |
+
- Upload an image to view its metadata
|
2022 |
+
- Edit metadata if needed
|
2023 |
+
|
2024 |
+
### Step 4: Export Results
|
2025 |
- Go to the "Export Results" tab
|
2026 |
+
- Select export format (CSV, JSON, HTML, or Markdown)
|
2027 |
- Click "Export Results"
|
2028 |
- Download the exported file
|
2029 |
|
|
|
2040 |
- Color Harmony: Measures how well colors work together
|
2041 |
- Composition: Measures adherence to compositional principles
|
2042 |
- Visual Interest: Measures how visually engaging the image is
|
2043 |
+
- Aesthetic Predictor: Score from Aesthetic Predictor V2.5 model
|
2044 |
+
- Aesthetic Shadow: Score from Aesthetic Shadow model
|
2045 |
|
2046 |
#### Anime-Specific Metrics
|
2047 |
- Line Quality: Measures clarity and quality of line work
|
2048 |
- Color Palette: Evaluates color choices for anime style
|
2049 |
+
- Character Quality: Assesses character design and rendering using Waifu Scorer
|
2050 |
+
- Anime Aesthetic: Score from specialized anime aesthetic model
|
2051 |
- Style Consistency: Measures adherence to anime style conventions
|
2052 |
""")
|
2053 |
|
|
|
2055 |
reset_button = gr.Button("Reset All Data")
|
2056 |
reset_output = gr.Textbox(label="Reset Status")
|
2057 |
|
2058 |
+
# Event handlers
|
2059 |
+
evaluate_button.click(
|
2060 |
+
fn=lambda *args: asyncio.create_task(evaluate_images_async(*args)),
|
2061 |
+
inputs=[images_input, model_name_input, evaluator_select, auto_batch, batch_size],
|
2062 |
+
outputs=[results_table, log_output, progress, batch_size]
|
2063 |
+
)
|
2064 |
+
|
2065 |
+
compare_button.click(
|
2066 |
+
compare_models,
|
2067 |
+
inputs=[],
|
2068 |
+
outputs=[comparison_output, overall_chart, radar_chart]
|
2069 |
+
)
|
2070 |
+
|
2071 |
+
metadata_image_input.change(
|
2072 |
+
extract_metadata_from_image,
|
2073 |
+
inputs=[metadata_image_input],
|
2074 |
+
outputs=[metadata_image_input, metadata_output]
|
2075 |
+
)
|
2076 |
+
|
2077 |
+
update_metadata_button.click(
|
2078 |
+
update_image_metadata,
|
2079 |
+
inputs=[metadata_image_input, metadata_output],
|
2080 |
+
outputs=[metadata_image_input, metadata_output]
|
2081 |
+
)
|
2082 |
+
|
2083 |
+
copy_metadata_button.click(
|
2084 |
+
lambda x: x,
|
2085 |
+
inputs=[metadata_output],
|
2086 |
+
outputs=[metadata_output]
|
2087 |
+
)
|
2088 |
+
|
2089 |
+
export_button.click(
|
2090 |
+
export_results,
|
2091 |
+
inputs=[format_select],
|
2092 |
+
outputs=[export_output]
|
2093 |
+
)
|
2094 |
+
|
2095 |
reset_button.click(
|
2096 |
reset_data,
|
2097 |
inputs=[],
|
2098 |
+
outputs=[reset_output]
|
2099 |
)
|
2100 |
|
2101 |
return interface
|
|
|
2104 |
interface = create_interface()
|
2105 |
|
2106 |
if __name__ == "__main__":
|
2107 |
+
# Import re here to avoid circular import
|
2108 |
+
interface.launch(server_name="0.0.0.0")
|
requirements.txt
CHANGED
@@ -8,3 +8,6 @@ pandas>=1.4.0
|
|
8 |
matplotlib>=3.5.0
|
9 |
tqdm>=4.62.0
|
10 |
scikit-image>=0.19.0
|
|
|
|
|
|
|
|
8 |
matplotlib>=3.5.0
|
9 |
tqdm>=4.62.0
|
10 |
scikit-image>=0.19.0
|
11 |
+
transformers>=4.30.0
|
12 |
+
huggingface-hub>=0.16.0
|
13 |
+
onnxruntime>=1.15.0
|