Spaces:
Sleeping
Sleeping
Delete utils/scoring.py
Browse files- utils/scoring.py +0 -359
utils/scoring.py
DELETED
@@ -1,359 +0,0 @@
|
|
1 |
-
import numpy as np
|
2 |
-
import logging
|
3 |
-
|
4 |
-
logger = logging.getLogger(__name__)
|
5 |
-
|
6 |
-
def calculate_final_score(
|
7 |
-
quality_score: float,
|
8 |
-
aesthetics_score: float,
|
9 |
-
prompt_score: float,
|
10 |
-
ai_detection_score: float,
|
11 |
-
has_prompt: bool = True
|
12 |
-
) -> float:
|
13 |
-
"""
|
14 |
-
Calculate weighted composite score for image evaluation
|
15 |
-
|
16 |
-
Args:
|
17 |
-
quality_score: Technical image quality (0-10)
|
18 |
-
aesthetics_score: Visual appeal score (0-10)
|
19 |
-
prompt_score: Prompt adherence score (0-10)
|
20 |
-
ai_detection_score: AI generation probability (0-1)
|
21 |
-
has_prompt: Whether prompt metadata is available
|
22 |
-
|
23 |
-
Returns:
|
24 |
-
Final composite score (0-10)
|
25 |
-
"""
|
26 |
-
try:
|
27 |
-
# Validate input scores
|
28 |
-
quality_score = max(0.0, min(10.0, quality_score))
|
29 |
-
aesthetics_score = max(0.0, min(10.0, aesthetics_score))
|
30 |
-
prompt_score = max(0.0, min(10.0, prompt_score))
|
31 |
-
ai_detection_score = max(0.0, min(1.0, ai_detection_score))
|
32 |
-
|
33 |
-
if has_prompt:
|
34 |
-
# Standard weights when prompt is available
|
35 |
-
weights = {
|
36 |
-
'quality': 0.25, # 25% - Technical quality
|
37 |
-
'aesthetics': 0.35, # 35% - Visual appeal (highest weight)
|
38 |
-
'prompt': 0.25, # 25% - Prompt following
|
39 |
-
'ai_detection': 0.15 # 15% - AI detection (inverted)
|
40 |
-
}
|
41 |
-
|
42 |
-
# Calculate weighted score
|
43 |
-
score = (
|
44 |
-
quality_score * weights['quality'] +
|
45 |
-
aesthetics_score * weights['aesthetics'] +
|
46 |
-
prompt_score * weights['prompt'] +
|
47 |
-
(1 - ai_detection_score) * weights['ai_detection']
|
48 |
-
)
|
49 |
-
else:
|
50 |
-
# Redistribute prompt weight when no prompt available
|
51 |
-
weights = {
|
52 |
-
'quality': 0.375, # 25% + 12.5% from prompt
|
53 |
-
'aesthetics': 0.475, # 35% + 12.5% from prompt
|
54 |
-
'ai_detection': 0.15 # 15% - AI detection (inverted)
|
55 |
-
}
|
56 |
-
|
57 |
-
# Calculate weighted score without prompt
|
58 |
-
score = (
|
59 |
-
quality_score * weights['quality'] +
|
60 |
-
aesthetics_score * weights['aesthetics'] +
|
61 |
-
(1 - ai_detection_score) * weights['ai_detection']
|
62 |
-
)
|
63 |
-
|
64 |
-
# Ensure score is in valid range
|
65 |
-
final_score = max(0.0, min(10.0, score))
|
66 |
-
|
67 |
-
logger.debug(f"Score calculation - Quality: {quality_score:.2f}, "
|
68 |
-
f"Aesthetics: {aesthetics_score:.2f}, Prompt: {prompt_score:.2f}, "
|
69 |
-
f"AI Detection: {ai_detection_score:.3f}, Has Prompt: {has_prompt}, "
|
70 |
-
f"Final: {final_score:.2f}")
|
71 |
-
|
72 |
-
return final_score
|
73 |
-
|
74 |
-
except Exception as e:
|
75 |
-
logger.error(f"Error calculating final score: {str(e)}")
|
76 |
-
return 5.0 # Default neutral score
|
77 |
-
|
78 |
-
def calculate_category_rankings(scores_list: list, category: str) -> list:
|
79 |
-
"""
|
80 |
-
Calculate rankings for a specific category
|
81 |
-
|
82 |
-
Args:
|
83 |
-
scores_list: List of score dictionaries
|
84 |
-
category: Category to rank by ('quality_score', 'aesthetics_score', etc.)
|
85 |
-
|
86 |
-
Returns:
|
87 |
-
List of rankings (1-based)
|
88 |
-
"""
|
89 |
-
try:
|
90 |
-
if not scores_list or category not in scores_list[0]:
|
91 |
-
return [1] * len(scores_list)
|
92 |
-
|
93 |
-
# Extract scores for the category
|
94 |
-
category_scores = [item[category] for item in scores_list]
|
95 |
-
|
96 |
-
# Calculate rankings (higher score = better rank)
|
97 |
-
rankings = []
|
98 |
-
for i, score in enumerate(category_scores):
|
99 |
-
rank = 1
|
100 |
-
for j, other_score in enumerate(category_scores):
|
101 |
-
if other_score > score:
|
102 |
-
rank += 1
|
103 |
-
rankings.append(rank)
|
104 |
-
|
105 |
-
return rankings
|
106 |
-
|
107 |
-
except Exception as e:
|
108 |
-
logger.error(f"Error calculating category rankings: {str(e)}")
|
109 |
-
return list(range(1, len(scores_list) + 1))
|
110 |
-
|
111 |
-
def normalize_scores(scores: list, target_range: tuple = (0, 10)) -> list:
|
112 |
-
"""
|
113 |
-
Normalize a list of scores to a target range
|
114 |
-
|
115 |
-
Args:
|
116 |
-
scores: List of numerical scores
|
117 |
-
target_range: Tuple of (min, max) for target range
|
118 |
-
|
119 |
-
Returns:
|
120 |
-
List of normalized scores
|
121 |
-
"""
|
122 |
-
try:
|
123 |
-
if not scores:
|
124 |
-
return []
|
125 |
-
|
126 |
-
min_score = min(scores)
|
127 |
-
max_score = max(scores)
|
128 |
-
|
129 |
-
# Avoid division by zero
|
130 |
-
if max_score == min_score:
|
131 |
-
return [target_range[1]] * len(scores)
|
132 |
-
|
133 |
-
target_min, target_max = target_range
|
134 |
-
target_span = target_max - target_min
|
135 |
-
score_span = max_score - min_score
|
136 |
-
|
137 |
-
normalized = []
|
138 |
-
for score in scores:
|
139 |
-
normalized_score = target_min + (score - min_score) * target_span / score_span
|
140 |
-
normalized.append(max(target_min, min(target_max, normalized_score)))
|
141 |
-
|
142 |
-
return normalized
|
143 |
-
|
144 |
-
except Exception as e:
|
145 |
-
logger.error(f"Error normalizing scores: {str(e)}")
|
146 |
-
return scores
|
147 |
-
|
148 |
-
def calculate_confidence_intervals(scores: list, confidence_level: float = 0.95) -> dict:
|
149 |
-
"""
|
150 |
-
Calculate confidence intervals for a list of scores
|
151 |
-
|
152 |
-
Args:
|
153 |
-
scores: List of numerical scores
|
154 |
-
confidence_level: Confidence level (0-1)
|
155 |
-
|
156 |
-
Returns:
|
157 |
-
Dictionary with mean, std, lower_bound, upper_bound
|
158 |
-
"""
|
159 |
-
try:
|
160 |
-
if not scores:
|
161 |
-
return {'mean': 0, 'std': 0, 'lower_bound': 0, 'upper_bound': 0}
|
162 |
-
|
163 |
-
mean_score = np.mean(scores)
|
164 |
-
std_score = np.std(scores)
|
165 |
-
|
166 |
-
# Calculate confidence interval using t-distribution
|
167 |
-
from scipy import stats
|
168 |
-
n = len(scores)
|
169 |
-
t_value = stats.t.ppf((1 + confidence_level) / 2, n - 1)
|
170 |
-
margin_error = t_value * std_score / np.sqrt(n)
|
171 |
-
|
172 |
-
return {
|
173 |
-
'mean': float(mean_score),
|
174 |
-
'std': float(std_score),
|
175 |
-
'lower_bound': float(mean_score - margin_error),
|
176 |
-
'upper_bound': float(mean_score + margin_error)
|
177 |
-
}
|
178 |
-
|
179 |
-
except Exception as e:
|
180 |
-
logger.error(f"Error calculating confidence intervals: {str(e)}")
|
181 |
-
return {'mean': 0, 'std': 0, 'lower_bound': 0, 'upper_bound': 0}
|
182 |
-
|
183 |
-
def detect_outliers(scores: list, method: str = 'iqr') -> list:
|
184 |
-
"""
|
185 |
-
Detect outliers in a list of scores
|
186 |
-
|
187 |
-
Args:
|
188 |
-
scores: List of numerical scores
|
189 |
-
method: Method to use ('iqr', 'zscore', 'modified_zscore')
|
190 |
-
|
191 |
-
Returns:
|
192 |
-
List of boolean values indicating outliers
|
193 |
-
"""
|
194 |
-
try:
|
195 |
-
if not scores or len(scores) < 3:
|
196 |
-
return [False] * len(scores)
|
197 |
-
|
198 |
-
scores_array = np.array(scores)
|
199 |
-
|
200 |
-
if method == 'iqr':
|
201 |
-
# Interquartile Range method
|
202 |
-
q1 = np.percentile(scores_array, 25)
|
203 |
-
q3 = np.percentile(scores_array, 75)
|
204 |
-
iqr = q3 - q1
|
205 |
-
lower_bound = q1 - 1.5 * iqr
|
206 |
-
upper_bound = q3 + 1.5 * iqr
|
207 |
-
outliers = (scores_array < lower_bound) | (scores_array > upper_bound)
|
208 |
-
|
209 |
-
elif method == 'zscore':
|
210 |
-
# Z-score method
|
211 |
-
z_scores = np.abs(stats.zscore(scores_array))
|
212 |
-
outliers = z_scores > 2.5
|
213 |
-
|
214 |
-
elif method == 'modified_zscore':
|
215 |
-
# Modified Z-score method (more robust)
|
216 |
-
median = np.median(scores_array)
|
217 |
-
mad = np.median(np.abs(scores_array - median))
|
218 |
-
modified_z_scores = 0.6745 * (scores_array - median) / mad
|
219 |
-
outliers = np.abs(modified_z_scores) > 3.5
|
220 |
-
|
221 |
-
else:
|
222 |
-
outliers = [False] * len(scores)
|
223 |
-
|
224 |
-
return outliers.tolist()
|
225 |
-
|
226 |
-
except Exception as e:
|
227 |
-
logger.error(f"Error detecting outliers: {str(e)}")
|
228 |
-
return [False] * len(scores)
|
229 |
-
|
230 |
-
def calculate_score_distribution(scores: list) -> dict:
|
231 |
-
"""
|
232 |
-
Calculate distribution statistics for scores
|
233 |
-
|
234 |
-
Args:
|
235 |
-
scores: List of numerical scores
|
236 |
-
|
237 |
-
Returns:
|
238 |
-
Dictionary with distribution statistics
|
239 |
-
"""
|
240 |
-
try:
|
241 |
-
if not scores:
|
242 |
-
return {}
|
243 |
-
|
244 |
-
scores_array = np.array(scores)
|
245 |
-
|
246 |
-
distribution = {
|
247 |
-
'count': len(scores),
|
248 |
-
'mean': float(np.mean(scores_array)),
|
249 |
-
'median': float(np.median(scores_array)),
|
250 |
-
'std': float(np.std(scores_array)),
|
251 |
-
'min': float(np.min(scores_array)),
|
252 |
-
'max': float(np.max(scores_array)),
|
253 |
-
'q1': float(np.percentile(scores_array, 25)),
|
254 |
-
'q3': float(np.percentile(scores_array, 75)),
|
255 |
-
'skewness': float(stats.skew(scores_array)),
|
256 |
-
'kurtosis': float(stats.kurtosis(scores_array))
|
257 |
-
}
|
258 |
-
|
259 |
-
return distribution
|
260 |
-
|
261 |
-
except Exception as e:
|
262 |
-
logger.error(f"Error calculating score distribution: {str(e)}")
|
263 |
-
return {}
|
264 |
-
|
265 |
-
def apply_score_adjustments(
|
266 |
-
scores: dict,
|
267 |
-
adjustments: dict = None
|
268 |
-
) -> dict:
|
269 |
-
"""
|
270 |
-
Apply custom score adjustments based on specific criteria
|
271 |
-
|
272 |
-
Args:
|
273 |
-
scores: Dictionary of scores
|
274 |
-
adjustments: Dictionary of adjustment parameters
|
275 |
-
|
276 |
-
Returns:
|
277 |
-
Dictionary of adjusted scores
|
278 |
-
"""
|
279 |
-
try:
|
280 |
-
if adjustments is None:
|
281 |
-
adjustments = {}
|
282 |
-
|
283 |
-
adjusted_scores = scores.copy()
|
284 |
-
|
285 |
-
# Apply anime mode adjustments
|
286 |
-
if adjustments.get('anime_mode', False):
|
287 |
-
# Boost aesthetics score for anime images
|
288 |
-
if 'aesthetics_score' in adjusted_scores:
|
289 |
-
adjusted_scores['aesthetics_score'] *= 1.1
|
290 |
-
adjusted_scores['aesthetics_score'] = min(10.0, adjusted_scores['aesthetics_score'])
|
291 |
-
|
292 |
-
# Apply quality penalties for low resolution
|
293 |
-
if adjustments.get('penalize_low_resolution', True):
|
294 |
-
width = adjustments.get('width', 1024)
|
295 |
-
height = adjustments.get('height', 1024)
|
296 |
-
total_pixels = width * height
|
297 |
-
|
298 |
-
if total_pixels < 262144: # Less than 512x512
|
299 |
-
penalty = 0.8
|
300 |
-
if 'quality_score' in adjusted_scores:
|
301 |
-
adjusted_scores['quality_score'] *= penalty
|
302 |
-
|
303 |
-
# Apply prompt complexity adjustments
|
304 |
-
prompt_length = adjustments.get('prompt_length', 0)
|
305 |
-
if prompt_length > 0 and 'prompt_score' in adjusted_scores:
|
306 |
-
if prompt_length > 100: # Very long prompts are harder to follow
|
307 |
-
adjusted_scores['prompt_score'] *= 0.95
|
308 |
-
elif prompt_length < 10: # Very short prompts are easier
|
309 |
-
adjusted_scores['prompt_score'] *= 1.05
|
310 |
-
adjusted_scores['prompt_score'] = min(10.0, adjusted_scores['prompt_score'])
|
311 |
-
|
312 |
-
return adjusted_scores
|
313 |
-
|
314 |
-
except Exception as e:
|
315 |
-
logger.error(f"Error applying score adjustments: {str(e)}")
|
316 |
-
return scores
|
317 |
-
|
318 |
-
def generate_score_summary(results_list: list) -> dict:
|
319 |
-
"""
|
320 |
-
Generate summary statistics for a batch of evaluation results
|
321 |
-
|
322 |
-
Args:
|
323 |
-
results_list: List of result dictionaries
|
324 |
-
|
325 |
-
Returns:
|
326 |
-
Dictionary with summary statistics
|
327 |
-
"""
|
328 |
-
try:
|
329 |
-
if not results_list:
|
330 |
-
return {}
|
331 |
-
|
332 |
-
# Extract scores by category
|
333 |
-
categories = ['quality_score', 'aesthetics_score', 'prompt_score', 'ai_detection_score', 'final_score']
|
334 |
-
summary = {}
|
335 |
-
|
336 |
-
for category in categories:
|
337 |
-
if category in results_list[0]:
|
338 |
-
scores = [result[category] for result in results_list if category in result]
|
339 |
-
if scores:
|
340 |
-
summary[category] = calculate_score_distribution(scores)
|
341 |
-
|
342 |
-
# Calculate overall statistics
|
343 |
-
final_scores = [result['final_score'] for result in results_list if 'final_score' in result]
|
344 |
-
if final_scores:
|
345 |
-
summary['overall'] = {
|
346 |
-
'total_images': len(results_list),
|
347 |
-
'average_score': np.mean(final_scores),
|
348 |
-
'best_score': max(final_scores),
|
349 |
-
'worst_score': min(final_scores),
|
350 |
-
'score_range': max(final_scores) - min(final_scores),
|
351 |
-
'images_with_prompts': sum(1 for r in results_list if r.get('has_prompt', False))
|
352 |
-
}
|
353 |
-
|
354 |
-
return summary
|
355 |
-
|
356 |
-
except Exception as e:
|
357 |
-
logger.error(f"Error generating score summary: {str(e)}")
|
358 |
-
return {}
|
359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|