Spaces:
Sleeping
Sleeping
File size: 21,184 Bytes
57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff ffdea99 57c45ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import gradio as gr
from PIL import Image, PngImagePlugin
import io
import os
import pandas as pd
import torch
from transformers import pipeline as transformers_pipeline , AutoModelForImageClassification, CLIPImageProcessor # Изменено для ImageReward
# from torchvision import transforms
from torchmetrics.functional.multimodal import clip_score
import open_clip # Изменено для open_clip
import re
import matplotlib.pyplot as plt
import json
from collections import defaultdict
import numpy as np
import logging
# --- ONNX Related Imports and Setup ---
try:
import onnxruntime
except ImportError:
print("onnxruntime not found. Please ensure it's in requirements.txt")
onnxruntime = None
from huggingface_hub import hf_hub_download
try:
from imgutils.data import rgb_encode
IMGUTILS_AVAILABLE = True
print("imgutils.data.rgb_encode found and will be used.")
except ImportError:
print("imgutils.data.rgb_encode not found. Using a basic fallback for preprocessing deepghs models.")
IMGUTILS_AVAILABLE = False
def rgb_encode(image: Image.Image, order_='CHW'): # Простая заглушка
img_arr = np.array(image.convert("RGB")) # Убедимся что RGB
if order_ == 'CHW':
img_arr = np.transpose(img_arr, (2, 0, 1))
# Эта заглушка возвращает uint8 0-255, как и ожидается далее
return img_arr.astype(np.uint8)
# --- Модель Конфигурация и Загрузка ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
ONNX_DEVICE = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider"
print(f"Using ONNX device: {ONNX_DEVICE}")
# --- Helper for ONNX models (deepghs) ---
@torch.no_grad()
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5):
image = image.resize(size, Image.Resampling.BILINEAR)
data_uint8 = rgb_encode(image, order_='CHW') # (C, H, W), uint8, 0-255
data_float01 = data_uint8.astype(np.float32) / 255.0
mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1))
std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1))
normalized_data = (data_float01 - mean) / std
return normalized_data[None, ...].astype(np.float32)
onnx_sessions_cache = {}
def get_onnx_session_and_meta(repo_id, model_subfolder):
cache_key = f"{repo_id}/{model_subfolder}"
if cache_key in onnx_sessions_cache:
return onnx_sessions_cache[cache_key]
if not onnxruntime:
# raise ImportError("ONNX Runtime is not available.") # Не будем падать, просто вернем None
print("ONNX Runtime is not available for get_onnx_session_and_meta")
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
try:
model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx")
meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json")
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if ONNX_DEVICE == "CPUExecutionProvider" and hasattr(os, 'cpu_count'): # hasattr для безопасности
options.intra_op_num_threads = os.cpu_count()
session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_DEVICE])
with open(meta_path, 'r') as f:
meta = json.load(f)
labels = meta.get('labels', [])
onnx_sessions_cache[cache_key] = (session, labels, meta)
return session, labels, meta
except Exception as e:
print(f"Error loading ONNX model {repo_id}/{model_subfolder}: {e}")
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
# 1. ImageReward
try:
# THUDM/ImageReward использует CLIPImageProcessor
reward_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") # Типичный процессор для таких моделей
reward_model = AutoModelForImageClassification.from_pretrained("THUDM/ImageReward").to(DEVICE)
reward_model.eval()
print("THUDM/ImageReward loaded successfully.")
except Exception as e:
print(f"Error loading THUDM/ImageReward: {e}")
reward_processor, reward_model = None, None
# 2. Anime Aesthetic (deepghs ONNX)
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic"
ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x"
ANIME_AESTHETIC_IMG_SIZE = (448, 448)
ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0}
# 3. MANIQA (Technical Quality) - ВРЕМЕННО ОТКЛЮЧЕНО
maniqa_pipe = None
print("MANIQA (honklers/maniqa-nr) is temporarily disabled due to loading issues. Will look for alternatives.")
# try:
# maniqa_pipe = transformers_pipeline("image-classification", model="honklers/maniqa-nr", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
# except Exception as e:
# print(f"Error loading honklers/maniqa-nr: {e}")
# maniqa_pipe = None
# 4. CLIP Score (laion/CLIP-ViT-L-14-laion2B-s32B-b82K) - open_clip
try:
clip_model_name = 'ViT-L-14'
# Для open_clip, `pretrained` это обычно имя датасета или комбинация
# `laion2b_s32b_b82k` - это один из весов для ViT-L-14
clip_model_instance, clip_preprocess_train, clip_preprocess_val = open_clip.create_model_and_transforms(
clip_model_name,
pretrained='laion2b_s32b_b82k', # Это правильное имя претрейна для open_clip
device=DEVICE
)
clip_preprocess = clip_preprocess_val # Используем preprocess для инференса
clip_tokenizer = open_clip.get_tokenizer(clip_model_name)
clip_model_instance.eval()
print(f"CLIP model {clip_model_name} (laion2b_s32b_b82k) loaded successfully.")
except Exception as e:
print(f"Error loading CLIP model {clip_model_name} (laion2b_s32b_b82k): {e}")
clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None
# 5. AI Detectors
# Organika/sdxl-detector - Transformers pipeline
try:
sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
print("Organika/sdxl-detector loaded successfully.")
except Exception as e:
print(f"Error loading Organika/sdxl-detector: {e}")
sdxl_detector_pipe = None
# deepghs/anime_ai_check - ONNX
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check"
ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce"
ANIME_AI_CHECK_IMG_SIZE = (384, 384)
# --- Функции извлечения метаданных (без изменений) ---
def extract_sd_parameters(image_pil):
if image_pil is None: return "", "N/A", "N/A", "N/A", {}
parameters_str = image_pil.info.get("parameters", "")
if not parameters_str: return "", "N/A", "N/A", "N/A", {}
prompt, negative_prompt, model_name, model_hash, other_params_dict = "", "N/A", "N/A", "N/A", {}
try:
neg_prompt_index = parameters_str.find("Negative prompt:")
steps_meta_index = parameters_str.find("Steps:")
if neg_prompt_index != -1:
prompt = parameters_str[:neg_prompt_index].strip()
params_part_start_index = steps_meta_index if steps_meta_index > neg_prompt_index else -1
if params_part_start_index != -1:
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):params_part_start_index].strip()
params_part = parameters_str[params_part_start_index:]
else:
end_of_neg = parameters_str.find("\n", neg_prompt_index + len("Negative prompt:"))
if end_of_neg == -1: end_of_neg = len(parameters_str)
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):end_of_neg].strip()
params_part = parameters_str[end_of_neg:].strip() if end_of_neg < len(parameters_str) else ""
elif steps_meta_index != -1:
prompt = parameters_str[:steps_meta_index].strip()
params_part = parameters_str[steps_meta_index:]
else:
prompt = parameters_str.strip()
params_part = ""
if params_part:
params_list = [p.strip() for p in params_part.split(",")]
temp_other_params = {}
for param_val_str in params_list:
parts = param_val_str.split(':', 1)
if len(parts) == 2:
key, value = parts[0].strip(), parts[1].strip()
temp_other_params[key] = value
if key == "Model": model_name = value
elif key == "Model hash": model_hash = value
for k,v in temp_other_params.items():
if k not in ["Model", "Model hash"]: other_params_dict[k] = v
if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}"
# Fallback for model name if only Checkpoint is present (e.g. from ComfyUI)
if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"]
if model_name == "N/A" and "model" in other_params_dict: model_name = other_params_dict["model"] # Another common key
except Exception as e:
print(f"Error parsing metadata: {e}")
return prompt, negative_prompt, model_name, model_hash, other_params_dict
# --- Функции оценки ---
@torch.no_grad()
def get_image_reward(image_pil):
if not reward_model or not reward_processor: return "N/A"
try:
# ImageReward ожидает специфическую предобработку, часто как у CLIP
inputs = reward_processor(images=image_pil, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
outputs = reward_model(**inputs)
return round(outputs.logits.item(), 4)
except Exception as e:
print(f"Error in ImageReward: {e}")
return "Error"
def get_anime_aesthetic_score_deepghs(image_pil):
session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER)
if not session or not labels: return "N/A"
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AESTHETIC_IMG_SIZE)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]
exp_scores = np.exp(scores - np.max(scores))
probabilities = exp_scores / np.sum(exp_scores)
weighted_score = sum(probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS.get(label, 0.0) for i, label in enumerate(labels))
return round(weighted_score, 4)
except Exception as e:
print(f"Error in Anime Aesthetic (ONNX): {e}")
return "Error"
@torch.no_grad()
def get_maniqa_score(image_pil): # Временно возвращает N/A
# if not maniqa_pipe: return "N/A"
# try:
# result = maniqa_pipe(image_pil.copy())
# score = 0.0
# for item in result:
# if item['label'].lower() == 'good quality': score = item['score']; break
# return round(score, 4)
# except Exception as e:
# print(f"Error in MANIQA: {e}")
# return "Error"
return "N/A (Disabled)"
@torch.no_grad()
def calculate_clip_score_value(image_pil, prompt_text):
if not clip_model_instance or not clip_preprocess or not clip_tokenizer or not prompt_text or prompt_text == "N/A":
return "N/A"
try:
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
# Убедимся, что prompt_text это строка, а не None или что-то еще
text_for_tokenizer = str(prompt_text) if prompt_text else ""
if not text_for_tokenizer: return "N/A (Empty Prompt)"
text_input = clip_tokenizer([text_for_tokenizer]).to(DEVICE)
image_features = clip_model_instance.encode_image(image_input)
text_features = clip_model_instance.encode_text(text_input)
image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
score = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0
return round(score, 2)
except Exception as e:
print(f"Error in CLIP Score: {e}")
return "Error"
@torch.no_grad()
def get_sdxl_detection_score(image_pil):
if not sdxl_detector_pipe: return "N/A"
try:
result = sdxl_detector_pipe(image_pil.copy())
ai_score = 0.0
for item in result:
if item['label'].lower() == 'artificial': ai_score = item['score']; break
return round(ai_score, 4)
except Exception as e:
print(f"Error in SDXL Detector: {e}")
return "Error"
def get_anime_ai_check_score_deepghs(image_pil):
session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER)
if not session or not labels: return "N/A"
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AI_CHECK_IMG_SIZE)
input_name = session.get_inputs()[0].name
output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]
exp_scores = np.exp(scores - np.max(scores))
probabilities = exp_scores / np.sum(exp_scores)
ai_prob = 0.0
for i, label in enumerate(labels):
if label.lower() == 'ai': ai_prob = probabilities[i]; break
return round(ai_prob, 4)
except Exception as e:
print(f"Error in Anime AI Check (ONNX): {e}")
return "Error"
# --- Основная функция обработки ---
def process_images(files, progress=gr.Progress(track_tqdm=True)):
if not files:
return pd.DataFrame(), None, None, None, None, "Please upload some images."
all_results = []
for i, file_obj in enumerate(files):
filename = "Unknown File"
try:
# file_obj.name может быть абсолютным путем на сервере
filename = os.path.basename(getattr(file_obj, 'name', f"file_{i}"))
img = Image.open(getattr(file_obj, 'name', str(file_obj)))
if img.mode != "RGB": img = img.convert("RGB")
prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img)
reward = get_image_reward(img)
anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img)
maniqa = get_maniqa_score(img) # Будет N/A (Disabled)
clip_val = calculate_clip_score_value(img, prompt)
sdxl_detect = get_sdxl_detection_score(img)
anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img)
all_results.append({
"Filename": filename, "Prompt": prompt if prompt else "N/A", "Model Name": model_n, "Model Hash": model_h,
"ImageReward": reward, "AnimeAesthetic_dg": anime_aes_deepghs, "MANIQA_TQ": maniqa,
"CLIPScore": clip_val, "SDXL_Detector_AI_Prob": sdxl_detect, "AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs,
})
except Exception as e:
print(f"CRITICAL: Failed to process {filename}: {e}")
all_results.append({
"Filename": filename, "Prompt": "Error", "Model Name": "Error", "Model Hash": "Error",
"ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error",
"CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error"
})
df = pd.DataFrame(all_results)
plot_model_avg_scores_buffer, plot_prompt_clip_scores_buffer = None, None
csv_buffer_val, json_buffer_val = "", ""
if not df.empty:
numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"]
for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce')
# График 1
df_model_plot = df[(df["Model Name"] != "N/A") & (df["Model Name"].notna())]
if not df_model_plot.empty and df_model_plot["Model Name"].nunique() > 0:
try:
model_avg_scores = df_model_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all')
if not model_avg_scores.empty:
fig1, ax1 = plt.subplots(figsize=(12, 7)); model_avg_scores.plot(kind="bar", ax=ax1)
ax1.set_title("Average Scores per Model"); ax1.set_ylabel("Average Score")
ax1.tick_params(axis='x', rotation=45, labelsize=8); plt.tight_layout()
plot_model_avg_scores_buffer = io.BytesIO(); fig1.savefig(plot_model_avg_scores_buffer, format="png"); plot_model_avg_scores_buffer.seek(0); plt.close(fig1)
except Exception as e: print(f"Error generating model average scores plot: {e}")
# График 2
df_prompt_plot = df[(df["Prompt"] != "N/A") & (df["Prompt"].notna()) & (df["CLIPScore"].notna())]
if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0 :
try:
df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (str(x)[:30] + '...') if len(str(x)) > 33 else str(x))
prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False)
if not prompt_clip_scores.empty and len(prompt_clip_scores) >= 1 : # Изменено на >=1 для одиночных промптов
fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15))))
prompt_clip_scores.head(20).plot(kind="barh", ax=ax2)
ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)"); ax2.set_xlabel("Average CLIPScore")
plt.tight_layout(); plot_prompt_clip_scores_buffer = io.BytesIO(); fig2.savefig(plot_prompt_clip_scores_buffer, format="png"); plot_prompt_clip_scores_buffer.seek(0); plt.close(fig2)
except Exception as e: print(f"Error generating prompt CLIP scores plot: {e}")
csv_b = io.StringIO(); df.to_csv(csv_b, index=False); csv_buffer_val = csv_b.getvalue()
json_b = io.StringIO(); df.to_json(json_b, orient='records', indent=4); json_buffer_val = json_b.getvalue()
return (
df,
gr.Image(value=plot_model_avg_scores_buffer, type="pil", visible=plot_model_avg_scores_buffer is not None),
gr.Image(value=plot_prompt_clip_scores_buffer, type="pil", visible=plot_prompt_clip_scores_buffer is not None),
gr.File(value=csv_buffer_val or None, label="Download CSV Results", visible=bool(csv_buffer_val), file_name="evaluation_results.csv"),
gr.File(value=json_buffer_val or None, label="Download JSON Results", visible=bool(json_buffer_val), file_name="evaluation_results.json"),
f"Processed {len(all_results)} images.",
)
# --- Интерфейс Gradio ---
with gr.Blocks(css="footer {display: none !important}") as demo:
gr.Markdown("# AI Image Model Evaluation Tool")
gr.Markdown("Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them...")
with gr.Row(): image_uploader = gr.Files(label="Upload Images (PNG)", file_count="multiple", file_types=["image"])
process_button = gr.Button("Evaluate Images", variant="primary")
status_textbox = gr.Textbox(label="Status", interactive=False)
gr.Markdown("## Evaluation Results Table")
results_table = gr.DataFrame(headers=[ # Убран max_rows
"Filename", "Prompt", "Model Name", "Model Hash", "ImageReward", "AnimeAesthetic_dg",
"MANIQA_TQ", "CLIPScore", "SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob"
], wrap=True)
with gr.Row():
download_csv_button = gr.File(label="Download CSV Results", interactive=False)
download_json_button = gr.File(label="Download JSON Results", interactive=False)
gr.Markdown("## Visualizations")
with gr.Row():
plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False)
plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False)
process_button.click(fn=process_images, inputs=[image_uploader], outputs=[
results_table, plot_output_model_avg, plot_output_prompt_clip,
download_csv_button, download_json_button, status_textbox
])
gr.Markdown("""**Metric Explanations:** ... (без изменений)""")
if __name__ == "__main__":
demo.launch(debug=True) |