File size: 21,184 Bytes
57c45ff
 
 
 
 
 
ffdea99
 
57c45ff
ffdea99
57c45ff
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
 
 
 
 
ffdea99
 
 
57c45ff
ffdea99
 
 
 
57c45ff
 
ffdea99
 
 
57c45ff
 
 
 
 
 
 
 
 
 
ffdea99
 
 
57c45ff
 
 
 
ffdea99
 
57c45ff
ffdea99
57c45ff
 
 
 
 
 
 
ffdea99
 
 
 
 
57c45ff
 
 
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
 
 
 
 
 
ffdea99
57c45ff
 
 
 
ffdea99
 
57c45ff
 
ffdea99
57c45ff
 
 
 
 
 
 
 
 
 
ffdea99
 
 
 
 
 
 
 
57c45ff
 
 
 
ffdea99
 
 
 
 
 
 
 
 
57c45ff
ffdea99
57c45ff
ffdea99
57c45ff
 
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
ffdea99
57c45ff
 
 
ffdea99
57c45ff
ffdea99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57c45ff
 
ffdea99
57c45ff
 
ffdea99
 
 
 
 
 
 
 
 
 
 
 
 
57c45ff
ffdea99
 
 
 
57c45ff
 
ffdea99
 
 
57c45ff
ffdea99
57c45ff
 
 
 
ffdea99
 
57c45ff
 
 
 
 
 
 
 
 
 
ffdea99
57c45ff
 
 
ffdea99
 
57c45ff
ffdea99
57c45ff
 
 
 
 
 
ffdea99
 
 
 
 
 
 
 
 
 
 
 
 
57c45ff
 
ffdea99
57c45ff
 
 
 
ffdea99
 
 
 
 
57c45ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
 
ffdea99
57c45ff
 
 
 
 
 
 
 
 
 
 
 
ffdea99
57c45ff
ffdea99
 
57c45ff
ffdea99
57c45ff
 
 
ffdea99
 
 
 
 
 
57c45ff
ffdea99
 
 
 
 
57c45ff
ffdea99
57c45ff
ffdea99
57c45ff
 
 
 
 
ffdea99
 
 
 
57c45ff
 
ffdea99
 
 
 
 
 
57c45ff
ffdea99
 
 
 
 
 
 
 
 
57c45ff
ffdea99
57c45ff
ffdea99
 
57c45ff
ffdea99
 
57c45ff
ffdea99
 
 
57c45ff
 
 
 
 
ffdea99
 
57c45ff
 
 
 
 
 
ffdea99
 
57c45ff
 
 
ffdea99
 
 
 
57c45ff
ffdea99
57c45ff
 
 
 
 
ffdea99
 
 
 
 
57c45ff
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import gradio as gr
from PIL import Image, PngImagePlugin
import io
import os
import pandas as pd
import torch
from transformers import pipeline as transformers_pipeline , AutoModelForImageClassification, CLIPImageProcessor # Изменено для ImageReward
# from torchvision import transforms
from torchmetrics.functional.multimodal import clip_score
import open_clip # Изменено для open_clip
import re
import matplotlib.pyplot as plt
import json
from collections import defaultdict
import numpy as np
import logging

# --- ONNX Related Imports and Setup ---
try:
    import onnxruntime
except ImportError:
    print("onnxruntime not found. Please ensure it's in requirements.txt")
    onnxruntime = None

from huggingface_hub import hf_hub_download

try:
    from imgutils.data import rgb_encode
    IMGUTILS_AVAILABLE = True
    print("imgutils.data.rgb_encode found and will be used.")
except ImportError:
    print("imgutils.data.rgb_encode not found. Using a basic fallback for preprocessing deepghs models.")
    IMGUTILS_AVAILABLE = False
    def rgb_encode(image: Image.Image, order_='CHW'): # Простая заглушка
        img_arr = np.array(image.convert("RGB")) # Убедимся что RGB
        if order_ == 'CHW':
            img_arr = np.transpose(img_arr, (2, 0, 1))
        # Эта заглушка возвращает uint8 0-255, как и ожидается далее
        return img_arr.astype(np.uint8)


# --- Модель Конфигурация и Загрузка ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {DEVICE}")
ONNX_DEVICE = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider"
print(f"Using ONNX device: {ONNX_DEVICE}")

# --- Helper for ONNX models (deepghs) ---
@torch.no_grad()
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5):
    image = image.resize(size, Image.Resampling.BILINEAR)
    data_uint8 = rgb_encode(image, order_='CHW') # (C, H, W), uint8, 0-255
    data_float01 = data_uint8.astype(np.float32) / 255.0

    mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1))
    std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1))
    
    normalized_data = (data_float01 - mean) / std
    return normalized_data[None, ...].astype(np.float32)

onnx_sessions_cache = {}

def get_onnx_session_and_meta(repo_id, model_subfolder):
    cache_key = f"{repo_id}/{model_subfolder}"
    if cache_key in onnx_sessions_cache:
        return onnx_sessions_cache[cache_key]

    if not onnxruntime:
        # raise ImportError("ONNX Runtime is not available.") # Не будем падать, просто вернем None
        print("ONNX Runtime is not available for get_onnx_session_and_meta")
        onnx_sessions_cache[cache_key] = (None, [], None)
        return None, [], None


    try:
        model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx")
        meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json")

        options = onnxruntime.SessionOptions()
        options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        if ONNX_DEVICE == "CPUExecutionProvider" and hasattr(os, 'cpu_count'): # hasattr для безопасности
             options.intra_op_num_threads = os.cpu_count()

        session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_DEVICE])
        
        with open(meta_path, 'r') as f:
            meta = json.load(f)
        
        labels = meta.get('labels', [])
        onnx_sessions_cache[cache_key] = (session, labels, meta)
        return session, labels, meta
    except Exception as e:
        print(f"Error loading ONNX model {repo_id}/{model_subfolder}: {e}")
        onnx_sessions_cache[cache_key] = (None, [], None)
        return None, [], None

# 1. ImageReward
try:
    # THUDM/ImageReward использует CLIPImageProcessor
    reward_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14") # Типичный процессор для таких моделей
    reward_model = AutoModelForImageClassification.from_pretrained("THUDM/ImageReward").to(DEVICE)
    reward_model.eval()
    print("THUDM/ImageReward loaded successfully.")
except Exception as e:
    print(f"Error loading THUDM/ImageReward: {e}")
    reward_processor, reward_model = None, None

# 2. Anime Aesthetic (deepghs ONNX)
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic"
ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x"
ANIME_AESTHETIC_IMG_SIZE = (448, 448)
ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0}

# 3. MANIQA (Technical Quality) - ВРЕМЕННО ОТКЛЮЧЕНО
maniqa_pipe = None
print("MANIQA (honklers/maniqa-nr) is temporarily disabled due to loading issues. Will look for alternatives.")
# try:
#     maniqa_pipe = transformers_pipeline("image-classification", model="honklers/maniqa-nr", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
# except Exception as e:
#     print(f"Error loading honklers/maniqa-nr: {e}")
#     maniqa_pipe = None

# 4. CLIP Score (laion/CLIP-ViT-L-14-laion2B-s32B-b82K) - open_clip
try:
    clip_model_name = 'ViT-L-14'
    # Для open_clip, `pretrained` это обычно имя датасета или комбинация
    # `laion2b_s32b_b82k` - это один из весов для ViT-L-14
    clip_model_instance, clip_preprocess_train, clip_preprocess_val = open_clip.create_model_and_transforms(
        clip_model_name, 
        pretrained='laion2b_s32b_b82k', # Это правильное имя претрейна для open_clip
        device=DEVICE
    )
    clip_preprocess = clip_preprocess_val # Используем preprocess для инференса
    clip_tokenizer = open_clip.get_tokenizer(clip_model_name)
    clip_model_instance.eval()
    print(f"CLIP model {clip_model_name} (laion2b_s32b_b82k) loaded successfully.")
except Exception as e:
    print(f"Error loading CLIP model {clip_model_name} (laion2b_s32b_b82k): {e}")
    clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None

# 5. AI Detectors
# Organika/sdxl-detector - Transformers pipeline
try:
    sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
    print("Organika/sdxl-detector loaded successfully.")
except Exception as e:
    print(f"Error loading Organika/sdxl-detector: {e}")
    sdxl_detector_pipe = None

# deepghs/anime_ai_check - ONNX
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check"
ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce"
ANIME_AI_CHECK_IMG_SIZE = (384, 384)

# --- Функции извлечения метаданных (без изменений) ---
def extract_sd_parameters(image_pil):
    if image_pil is None: return "", "N/A", "N/A", "N/A", {}
    parameters_str = image_pil.info.get("parameters", "")
    if not parameters_str: return "", "N/A", "N/A", "N/A", {}
    prompt, negative_prompt, model_name, model_hash, other_params_dict = "", "N/A", "N/A", "N/A", {}
    try:
        neg_prompt_index = parameters_str.find("Negative prompt:")
        steps_meta_index = parameters_str.find("Steps:")
        if neg_prompt_index != -1:
            prompt = parameters_str[:neg_prompt_index].strip()
            params_part_start_index = steps_meta_index if steps_meta_index > neg_prompt_index else -1
            if params_part_start_index != -1:
                negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):params_part_start_index].strip()
                params_part = parameters_str[params_part_start_index:]
            else:
                end_of_neg = parameters_str.find("\n", neg_prompt_index + len("Negative prompt:"))
                if end_of_neg == -1: end_of_neg = len(parameters_str)
                negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):end_of_neg].strip()
                params_part = parameters_str[end_of_neg:].strip() if end_of_neg < len(parameters_str) else ""
        elif steps_meta_index != -1:
            prompt = parameters_str[:steps_meta_index].strip()
            params_part = parameters_str[steps_meta_index:]
        else:
            prompt = parameters_str.strip()
            params_part = ""

        if params_part:
            params_list = [p.strip() for p in params_part.split(",")]
            temp_other_params = {}
            for param_val_str in params_list:
                parts = param_val_str.split(':', 1)
                if len(parts) == 2:
                    key, value = parts[0].strip(), parts[1].strip()
                    temp_other_params[key] = value
                    if key == "Model": model_name = value
                    elif key == "Model hash": model_hash = value
            for k,v in temp_other_params.items():
                if k not in ["Model", "Model hash"]: other_params_dict[k] = v
        
        if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}"
        # Fallback for model name if only Checkpoint is present (e.g. from ComfyUI)
        if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"]
        if model_name == "N/A" and "model" in other_params_dict: model_name = other_params_dict["model"] # Another common key


    except Exception as e:
        print(f"Error parsing metadata: {e}")
    return prompt, negative_prompt, model_name, model_hash, other_params_dict

# --- Функции оценки ---
@torch.no_grad()
def get_image_reward(image_pil):
    if not reward_model or not reward_processor: return "N/A"
    try:
        # ImageReward ожидает специфическую предобработку, часто как у CLIP
        inputs = reward_processor(images=image_pil, return_tensors="pt", padding=True, truncation=True).to(DEVICE)
        outputs = reward_model(**inputs)
        return round(outputs.logits.item(), 4)
    except Exception as e:
        print(f"Error in ImageReward: {e}")
        return "Error"

def get_anime_aesthetic_score_deepghs(image_pil):
    session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER)
    if not session or not labels: return "N/A"
    try:
        input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AESTHETIC_IMG_SIZE)
        input_name = session.get_inputs()[0].name
        output_name = session.get_outputs()[0].name
        onnx_output, = session.run([output_name], {input_name: input_data})
        scores = onnx_output[0]
        exp_scores = np.exp(scores - np.max(scores))
        probabilities = exp_scores / np.sum(exp_scores)
        weighted_score = sum(probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS.get(label, 0.0) for i, label in enumerate(labels))
        return round(weighted_score, 4)
    except Exception as e:
        print(f"Error in Anime Aesthetic (ONNX): {e}")
        return "Error"

@torch.no_grad()
def get_maniqa_score(image_pil): # Временно возвращает N/A
    # if not maniqa_pipe: return "N/A"
    # try:
    #     result = maniqa_pipe(image_pil.copy())
    #     score = 0.0
    #     for item in result:
    #         if item['label'].lower() == 'good quality': score = item['score']; break
    #     return round(score, 4)
    # except Exception as e:
    #     print(f"Error in MANIQA: {e}")
    #     return "Error"
    return "N/A (Disabled)"


@torch.no_grad()
def calculate_clip_score_value(image_pil, prompt_text):
    if not clip_model_instance or not clip_preprocess or not clip_tokenizer or not prompt_text or prompt_text == "N/A":
        return "N/A"
    try:
        image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
        # Убедимся, что prompt_text это строка, а не None или что-то еще
        text_for_tokenizer = str(prompt_text) if prompt_text else ""
        if not text_for_tokenizer: return "N/A (Empty Prompt)"

        text_input = clip_tokenizer([text_for_tokenizer]).to(DEVICE)
        
        image_features = clip_model_instance.encode_image(image_input)
        text_features = clip_model_instance.encode_text(text_input)
        image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
        text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
        score = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0
        return round(score, 2)
    except Exception as e:
        print(f"Error in CLIP Score: {e}")
        return "Error"

@torch.no_grad()
def get_sdxl_detection_score(image_pil):
    if not sdxl_detector_pipe: return "N/A"
    try:
        result = sdxl_detector_pipe(image_pil.copy())
        ai_score = 0.0
        for item in result:
            if item['label'].lower() == 'artificial': ai_score = item['score']; break
        return round(ai_score, 4)
    except Exception as e:
        print(f"Error in SDXL Detector: {e}")
        return "Error"

def get_anime_ai_check_score_deepghs(image_pil):
    session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER)
    if not session or not labels: return "N/A"
    try:
        input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AI_CHECK_IMG_SIZE)
        input_name = session.get_inputs()[0].name
        output_name = session.get_outputs()[0].name
        onnx_output, = session.run([output_name], {input_name: input_data})
        scores = onnx_output[0]
        exp_scores = np.exp(scores - np.max(scores))
        probabilities = exp_scores / np.sum(exp_scores)
        ai_prob = 0.0
        for i, label in enumerate(labels):
            if label.lower() == 'ai': ai_prob = probabilities[i]; break
        return round(ai_prob, 4)
    except Exception as e:
        print(f"Error in Anime AI Check (ONNX): {e}")
        return "Error"

# --- Основная функция обработки ---
def process_images(files, progress=gr.Progress(track_tqdm=True)):
    if not files:
        return pd.DataFrame(), None, None, None, None, "Please upload some images."

    all_results = []
    for i, file_obj in enumerate(files):
        filename = "Unknown File"
        try:
            # file_obj.name может быть абсолютным путем на сервере
            filename = os.path.basename(getattr(file_obj, 'name', f"file_{i}"))
            img = Image.open(getattr(file_obj, 'name', str(file_obj)))
            if img.mode != "RGB": img = img.convert("RGB")

            prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img)

            reward = get_image_reward(img)
            anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img)
            maniqa = get_maniqa_score(img) # Будет N/A (Disabled)
            clip_val = calculate_clip_score_value(img, prompt)
            sdxl_detect = get_sdxl_detection_score(img)
            anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img)

            all_results.append({
                "Filename": filename, "Prompt": prompt if prompt else "N/A", "Model Name": model_n, "Model Hash": model_h,
                "ImageReward": reward, "AnimeAesthetic_dg": anime_aes_deepghs, "MANIQA_TQ": maniqa,
                "CLIPScore": clip_val, "SDXL_Detector_AI_Prob": sdxl_detect, "AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs,
            })
        except Exception as e:
            print(f"CRITICAL: Failed to process {filename}: {e}")
            all_results.append({
                "Filename": filename, "Prompt": "Error", "Model Name": "Error", "Model Hash": "Error",
                "ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error",
                "CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error"
            })

    df = pd.DataFrame(all_results)
    plot_model_avg_scores_buffer, plot_prompt_clip_scores_buffer = None, None
    csv_buffer_val, json_buffer_val = "", ""

    if not df.empty:
        numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"]
        for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce')

        # График 1
        df_model_plot = df[(df["Model Name"] != "N/A") & (df["Model Name"].notna())]
        if not df_model_plot.empty and df_model_plot["Model Name"].nunique() > 0:
            try:
                model_avg_scores = df_model_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all')
                if not model_avg_scores.empty:
                    fig1, ax1 = plt.subplots(figsize=(12, 7)); model_avg_scores.plot(kind="bar", ax=ax1)
                    ax1.set_title("Average Scores per Model"); ax1.set_ylabel("Average Score")
                    ax1.tick_params(axis='x', rotation=45, labelsize=8); plt.tight_layout()
                    plot_model_avg_scores_buffer = io.BytesIO(); fig1.savefig(plot_model_avg_scores_buffer, format="png"); plot_model_avg_scores_buffer.seek(0); plt.close(fig1)
            except Exception as e: print(f"Error generating model average scores plot: {e}")

        # График 2
        df_prompt_plot = df[(df["Prompt"] != "N/A") & (df["Prompt"].notna()) & (df["CLIPScore"].notna())]
        if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0 :
            try:
                df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (str(x)[:30] + '...') if len(str(x)) > 33 else str(x))
                prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False)
                if not prompt_clip_scores.empty and len(prompt_clip_scores) >= 1 : # Изменено на >=1 для одиночных промптов
                    fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15))))
                    prompt_clip_scores.head(20).plot(kind="barh", ax=ax2)
                    ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)"); ax2.set_xlabel("Average CLIPScore")
                    plt.tight_layout(); plot_prompt_clip_scores_buffer = io.BytesIO(); fig2.savefig(plot_prompt_clip_scores_buffer, format="png"); plot_prompt_clip_scores_buffer.seek(0); plt.close(fig2)
            except Exception as e: print(f"Error generating prompt CLIP scores plot: {e}")
        
        csv_b = io.StringIO(); df.to_csv(csv_b, index=False); csv_buffer_val = csv_b.getvalue()
        json_b = io.StringIO(); df.to_json(json_b, orient='records', indent=4); json_buffer_val = json_b.getvalue()

    return (
        df,
        gr.Image(value=plot_model_avg_scores_buffer, type="pil", visible=plot_model_avg_scores_buffer is not None),
        gr.Image(value=plot_prompt_clip_scores_buffer, type="pil", visible=plot_prompt_clip_scores_buffer is not None),
        gr.File(value=csv_buffer_val or None, label="Download CSV Results", visible=bool(csv_buffer_val), file_name="evaluation_results.csv"),
        gr.File(value=json_buffer_val or None, label="Download JSON Results", visible=bool(json_buffer_val), file_name="evaluation_results.json"),
        f"Processed {len(all_results)} images.",
    )

# --- Интерфейс Gradio ---
with gr.Blocks(css="footer {display: none !important}") as demo:
    gr.Markdown("# AI Image Model Evaluation Tool")
    gr.Markdown("Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them...")
    with gr.Row(): image_uploader = gr.Files(label="Upload Images (PNG)", file_count="multiple", file_types=["image"])
    process_button = gr.Button("Evaluate Images", variant="primary")
    status_textbox = gr.Textbox(label="Status", interactive=False)
    gr.Markdown("## Evaluation Results Table")
    results_table = gr.DataFrame(headers=[ # Убран max_rows
        "Filename", "Prompt", "Model Name", "Model Hash", "ImageReward", "AnimeAesthetic_dg",
        "MANIQA_TQ", "CLIPScore", "SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob"
    ], wrap=True)
    with gr.Row():
        download_csv_button = gr.File(label="Download CSV Results", interactive=False)
        download_json_button = gr.File(label="Download JSON Results", interactive=False)
    gr.Markdown("## Visualizations")
    with gr.Row():
        plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False)
        plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False)
    process_button.click(fn=process_images, inputs=[image_uploader], outputs=[
        results_table, plot_output_model_avg, plot_output_prompt_clip,
        download_csv_button, download_json_button, status_textbox
    ])
    gr.Markdown("""**Metric Explanations:** ... (без изменений)""")

if __name__ == "__main__":
    demo.launch(debug=True)