Spaces:
Sleeping
Sleeping
File size: 25,599 Bytes
57c45ff 7f7c3a3 57c45ff 7f7c3a3 713959a 57c45ff ffdea99 842de2a 7f7c3a3 57c45ff 713959a 57c45ff ffdea99 713959a 57c45ff 713959a ffdea99 713959a 57c45ff ffdea99 57c45ff 713959a 842de2a 713959a 57c45ff ffdea99 713959a ffdea99 57c45ff ffdea99 57c45ff ffdea99 713959a 57c45ff 842de2a 57c45ff 713959a 842de2a ffdea99 57c45ff 713959a 57c45ff 713959a 57c45ff 713959a 57c45ff 713959a 57c45ff 713959a ffdea99 57c45ff 713959a 842de2a 7f7c3a3 713959a 57c45ff 7f7c3a3 713959a 57c45ff 713959a 57c45ff 713959a 7f7c3a3 ffdea99 57c45ff 713959a ffdea99 57c45ff 713959a 842de2a ffdea99 713959a ffdea99 7f7c3a3 ffdea99 842de2a ffdea99 713959a ffdea99 713959a ffdea99 713959a 7f7c3a3 ffdea99 57c45ff 7f7c3a3 713959a 7f7c3a3 842de2a 57c45ff ffdea99 842de2a 57c45ff 842de2a ffdea99 842de2a 7f7c3a3 57c45ff 713959a 7f7c3a3 57c45ff 713959a 7f7c3a3 842de2a 57c45ff 842de2a 57c45ff 713959a 842de2a 7f7c3a3 57c45ff 713959a 7f7c3a3 842de2a 57c45ff 842de2a 57c45ff 713959a 842de2a 7f7c3a3 713959a 7f7c3a3 842de2a 57c45ff ffdea99 842de2a 57c45ff 842de2a 713959a 57c45ff 713959a 842de2a 7f7c3a3 57c45ff 713959a 57c45ff 7f7c3a3 713959a 57c45ff 713959a 7f7c3a3 842de2a 713959a 57c45ff 7f7c3a3 57c45ff 842de2a 713959a 842de2a 7f7c3a3 842de2a 7f7c3a3 713959a 57c45ff ffdea99 842de2a 713959a ffdea99 713959a ffdea99 713959a 842de2a 7f7c3a3 842de2a 7f7c3a3 57c45ff 713959a 57c45ff 713959a 57c45ff 713959a 7f7c3a3 842de2a 7f7c3a3 713959a 842de2a 7f7c3a3 842de2a 7f7c3a3 57c45ff ffdea99 7f7c3a3 ffdea99 842de2a 57c45ff ffdea99 57c45ff ffdea99 713959a ffdea99 57c45ff ffdea99 57c45ff 713959a ffdea99 57c45ff ffdea99 713959a 842de2a 7f7c3a3 842de2a 7f7c3a3 842de2a 7f7c3a3 57c45ff 842de2a 713959a 7f7c3a3 713959a 57c45ff 7f7c3a3 713959a 57c45ff ffdea99 842de2a 57c45ff 713959a 842de2a 57c45ff 713959a ffdea99 57c45ff 7f7c3a3 57c45ff 713959a 842de2a 713959a ffdea99 57c45ff 713959a 842de2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import gradio as gr
from PIL import Image, PngImagePlugin # Убедимся, что Image из PIL импортирован
import io
import os
import pandas as pd
import torch
from transformers import pipeline as transformers_pipeline , CLIPImageProcessor
import open_clip
import re
import matplotlib.pyplot as plt
import json
from collections import defaultdict
import numpy as np
import logging
import time
import tempfile
# --- ONNX Related Imports and Setup ---
try:
import onnxruntime
except ImportError:
print("WARNING: onnxruntime not found. ONNX models will not be available.")
onnxruntime = None
from huggingface_hub import hf_hub_download
try:
from imgutils.data import rgb_encode
IMGUTILS_AVAILABLE = True
print("INFO: imgutils.data.rgb_encode found and will be used for deepghs models.")
except ImportError:
print("WARNING: imgutils.data.rgb_encode not found. Using a basic fallback for preprocessing deepghs models.")
IMGUTILS_AVAILABLE = False
def rgb_encode(image: Image.Image, order_='CHW'):
img_arr = np.array(image.convert("RGB"))
if order_ == 'CHW':
img_arr = np.transpose(img_arr, (2, 0, 1))
return img_arr.astype(np.uint8)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: PyTorch Device: {DEVICE}")
ONNX_EXECUTION_PROVIDER = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider"
if onnxruntime: print(f"INFO: ONNX Execution Provider: {ONNX_EXECUTION_PROVIDER}")
else: print("INFO: ONNX Runtime not available, ONNX models will be skipped.")
@torch.no_grad()
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5):
image = image.resize(size, Image.Resampling.BILINEAR)
data_uint8 = rgb_encode(image, order_='CHW')
data_float01 = data_uint8.astype(np.float32) / 255.0
mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1))
std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1))
normalized_data = (data_float01 - mean) / std
return normalized_data[None, ...].astype(np.float32)
onnx_sessions_cache = {}
def get_onnx_session_and_meta(repo_id, model_subfolder, current_log_list):
cache_key = f"{repo_id}/{model_subfolder}"
if cache_key in onnx_sessions_cache: return onnx_sessions_cache[cache_key]
if not onnxruntime:
msg = f"ERROR: ONNX Runtime not available for get_onnx_session_and_meta ({cache_key}). Skipping."
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
try:
msg = f"INFO: Loading ONNX model {repo_id}/{model_subfolder}..."
print(msg); current_log_list.append(msg)
model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx")
meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json")
options = onnxruntime.SessionOptions()
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
if ONNX_EXECUTION_PROVIDER == "CPUExecutionProvider" and hasattr(os, 'cpu_count'):
options.intra_op_num_threads = os.cpu_count()
session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_EXECUTION_PROVIDER])
with open(meta_path, 'r') as f: meta = json.load(f)
labels = meta.get('labels', [])
msg = f"INFO: ONNX model {cache_key} loaded successfully with provider {ONNX_EXECUTION_PROVIDER}."
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (session, labels, meta)
return session, labels, meta
except Exception as e:
msg = f"ERROR: Failed to load ONNX model {cache_key}: {e}"
print(msg); current_log_list.append(msg)
onnx_sessions_cache[cache_key] = (None, [], None)
return None, [], None
reward_processor, reward_model = None, None
print("INFO: THUDM/ImageReward is temporarily disabled due to loading issues.")
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic"; ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x"
ANIME_AESTHETIC_IMG_SIZE = (448, 448); ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0}
print("INFO: MANIQA (honklers/maniqa-nr) is currently disabled.")
clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None
try:
clip_model_name = 'ViT-L-14'; print(f"INFO: Loading CLIP model {clip_model_name} (laion2b_s32b_b82k)...")
clip_model_instance, _, clip_preprocess_val = open_clip.create_model_and_transforms(clip_model_name, pretrained='laion2b_s32b_b82k', device=DEVICE)
clip_preprocess = clip_preprocess_val; clip_tokenizer = open_clip.get_tokenizer(clip_model_name)
clip_model_instance.eval(); print(f"INFO: CLIP model {clip_model_name} (laion2b_s32b_b82k) loaded successfully.")
except Exception as e: print(f"ERROR: Failed to load CLIP model {clip_model_name} (laion2b_s32b_b82k): {e}")
sdxl_detector_pipe = None
try:
print("INFO: Loading Organika/sdxl-detector model...")
sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1)
print("INFO: Organika/sdxl-detector loaded successfully.")
except Exception as e: print(f"ERROR: Failed to load Organika/sdxl-detector: {e}")
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check"; ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce"
ANIME_AI_CHECK_IMG_SIZE = (384, 384)
def extract_sd_parameters(image_pil, filename_for_log, current_log_list):
if image_pil is None: return "", "N/A", "N/A", "N/A", {}
parameters_str = image_pil.info.get("parameters", "")
if not parameters_str:
current_log_list.append(f"DEBUG [{filename_for_log}]: No metadata found in image.")
return "", "N/A", "N/A", "N/A", {}
current_log_list.append(f"DEBUG [{filename_for_log}]: Raw metadata: {parameters_str[:100]}...")
prompt, negative_prompt, model_name, model_hash, other_params_dict = "", "N/A", "N/A", "N/A", {}
try:
neg_prompt_index = parameters_str.find("Negative prompt:")
steps_meta_index = parameters_str.find("Steps:")
if neg_prompt_index != -1:
prompt = parameters_str[:neg_prompt_index].strip()
params_part_start_index = steps_meta_index if steps_meta_index != -1 and steps_meta_index > neg_prompt_index else -1
if params_part_start_index != -1:
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):params_part_start_index].strip()
params_part = parameters_str[params_part_start_index:]
else:
end_of_neg = parameters_str.find("\n", neg_prompt_index + len("Negative prompt:"))
if end_of_neg == -1: end_of_neg = len(parameters_str)
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):end_of_neg].strip()
params_part = parameters_str[end_of_neg:].strip() if end_of_neg < len(parameters_str) else ""
elif steps_meta_index != -1:
prompt = parameters_str[:steps_meta_index].strip(); params_part = parameters_str[steps_meta_index:]
else:
prompt = parameters_str.strip(); params_part = ""
if params_part:
params_list = [p.strip() for p in params_part.split(",")]
temp_other_params = {}
for param_val_str in params_list:
parts = param_val_str.split(':', 1)
if len(parts) == 2:
key, value = parts[0].strip(), parts[1].strip()
temp_other_params[key] = value
if key.lower() == "model": model_name = value
elif key.lower() == "model hash": model_hash = value
for k,v in temp_other_params.items():
if k.lower() not in ["model", "model hash"]: other_params_dict[k] = v
if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}"
if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"]
if model_name == "N/A" and "model" in other_params_dict: model_name = other_params_dict["model"]
current_log_list.append(f"DEBUG [{filename_for_log}]: Parsed Prompt: {prompt[:50]}... | Model: {model_name}")
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: Failed to parse metadata: {e}")
return prompt, negative_prompt, model_name, model_hash, other_params_dict
@torch.no_grad()
def get_image_reward(image_pil, filename_for_log, current_log_list): return "N/A (Disabled)"
def get_anime_aesthetic_score_deepghs(image_pil, filename_for_log, current_log_list):
session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER, current_log_list)
if not session or not labels: current_log_list.append(f"INFO [{filename_for_log}]: AnimeAesthetic ONNX model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting AnimeAesthetic (ONNX) score...")
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AESTHETIC_IMG_SIZE)
input_name = session.get_inputs()[0].name; output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]; exp_scores = np.exp(scores - np.max(scores)); probabilities = exp_scores / np.sum(exp_scores)
weighted_score = sum(probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS.get(label, 0.0) for i, label in enumerate(labels))
score = round(weighted_score, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: AnimeAesthetic (ONNX) score: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: AnimeAesthetic (ONNX) scoring failed: {e}"); return "Error"
@torch.no_grad()
def get_maniqa_score(image_pil, filename_for_log, current_log_list):
current_log_list.append(f"INFO [{filename_for_log}]: MANIQA is disabled."); return "N/A (Disabled)"
@torch.no_grad()
def calculate_clip_score_value(image_pil, prompt_text, filename_for_log, current_log_list):
if not clip_model_instance or not clip_preprocess or not clip_tokenizer: current_log_list.append(f"INFO [{filename_for_log}]: CLIP model not loaded, skipping CLIPScore."); return "N/A"
if not prompt_text or prompt_text == "N/A": current_log_list.append(f"INFO [{filename_for_log}]: Empty prompt, skipping CLIPScore."); return "N/A (Empty Prompt)"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting CLIPScore (PyTorch Device: {DEVICE})...")
try:
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE)
text_for_tokenizer = str(prompt_text); text_input = clip_tokenizer([text_for_tokenizer]).to(DEVICE)
image_features = clip_model_instance.encode_image(image_input); text_features = clip_model_instance.encode_text(text_input)
image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
score_val = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0
score = round(score_val, 2); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: CLIPScore: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: CLIPScore calculation failed: {e}"); return "Error"
@torch.no_grad()
def get_sdxl_detection_score(image_pil, filename_for_log, current_log_list):
if not sdxl_detector_pipe: current_log_list.append(f"INFO [{filename_for_log}]: SDXL_Detector model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting SDXL_Detector score (Device: {sdxl_detector_pipe.device})...")
try:
result = sdxl_detector_pipe(image_pil.copy()); ai_score_val = 0.0
for item in result:
if item['label'].lower() == 'artificial': ai_score_val = item['score']; break
score = round(ai_score_val, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: SDXL_Detector AI Prob: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: SDXL_Detector scoring failed: {e}"); return "Error"
def get_anime_ai_check_score_deepghs(image_pil, filename_for_log, current_log_list):
session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER, current_log_list)
if not session or not labels: current_log_list.append(f"INFO [{filename_for_log}]: AnimeAI_Check ONNX model not loaded, skipping."); return "N/A"
t_start = time.time(); current_log_list.append(f"DEBUG [{filename_for_log}]: Starting AnimeAI_Check (ONNX) score...")
try:
input_data = _img_preprocess_for_onnx(image_pil.copy(), size=ANIME_AI_CHECK_IMG_SIZE)
input_name = session.get_inputs()[0].name; output_name = session.get_outputs()[0].name
onnx_output, = session.run([output_name], {input_name: input_data})
scores = onnx_output[0]; exp_scores = np.exp(scores - np.max(scores)); probabilities = exp_scores / np.sum(exp_scores)
ai_prob_val = 0.0
for i, label in enumerate(labels):
if label.lower() == 'ai': ai_prob_val = probabilities[i]; break
score = round(ai_prob_val, 4); t_end = time.time()
current_log_list.append(f"DEBUG [{filename_for_log}]: AnimeAI_Check (ONNX) AI Prob: {score} (took {t_end - t_start:.2f}s)"); return score
except Exception as e: current_log_list.append(f"ERROR [{filename_for_log}]: AnimeAI_Check (ONNX) scoring failed: {e}"); return "Error"
def process_images_generator(files, progress=gr.Progress(track_tqdm=True)):
if not files:
yield (pd.DataFrame(),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Please upload some images.", "No files to process.")
return
all_results = []
log_accumulator = [f"INFO: Starting processing for {len(files)} images..."]
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Processing...", "\n".join(log_accumulator))
for i, file_obj in enumerate(files):
filename_for_log = "Unknown File"; current_img_total_time_start = time.time()
try:
filename_for_log = os.path.basename(getattr(file_obj, 'name', f"file_{i}_{int(time.time())}"))
log_accumulator.append(f"--- Processing image {i+1}/{len(files)}: {filename_for_log} ---")
progress( (i + 0.1) / len(files), desc=f"Img {i+1}/{len(files)}: Loading {filename_for_log}")
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Loading image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
img = Image.open(getattr(file_obj, 'name', str(file_obj)))
if img.mode != "RGB": img = img.convert("RGB")
progress( (i + 0.3) / len(files), desc=f"Img {i+1}/{len(files)}: Scoring {filename_for_log}")
prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img, filename_for_log, log_accumulator)
reward = get_image_reward(img, filename_for_log, log_accumulator)
anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img, filename_for_log, log_accumulator)
maniqa = get_maniqa_score(img, filename_for_log, log_accumulator)
clip_val = calculate_clip_score_value(img, prompt, filename_for_log, log_accumulator)
sdxl_detect = get_sdxl_detection_score(img, filename_for_log, log_accumulator)
anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img, filename_for_log, log_accumulator)
current_img_total_time_end = time.time()
log_accumulator.append(f"INFO [{filename_for_log}]: Finished all scores (total for image: {current_img_total_time_end - current_img_total_time_start:.2f}s)")
all_results.append({
"Filename": filename_for_log, "Prompt": prompt if prompt else "N/A", "Model Name": model_n, "Model Hash": model_h,
"ImageReward": reward, "AnimeAesthetic_dg": anime_aes_deepghs, "MANIQA_TQ": maniqa,
"CLIPScore": clip_val, "SDXL_Detector_AI_Prob": sdxl_detect, "AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs,
})
df_so_far = pd.DataFrame(all_results)
progress( (i + 1.0) / len(files), desc=f"Img {i+1}/{len(files)}: Done {filename_for_log}")
yield (df_so_far,
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Processed image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
except Exception as e:
log_accumulator.append(f"CRITICAL ERROR processing {filename_for_log}: {e}")
print(f"CRITICAL ERROR processing {filename_for_log}: {e}")
all_results.append({
"Filename": filename_for_log, "Prompt": "Critical Error", "Model Name": "Error", "Model Hash": "Error",
"ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error",
"CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error"
})
df_so_far = pd.DataFrame(all_results)
yield (df_so_far,
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
f"Error on image {i+1}/{len(files)}: {filename_for_log}", "\n".join(log_accumulator))
log_accumulator.append("--- Generating final plots and download files ---")
progress(1.0, desc="Generating final plots...")
yield (pd.DataFrame(all_results),
gr.Image(visible=False), gr.Image(visible=False),
gr.File(visible=False), gr.File(visible=False),
"Generating final plots...", "\n".join(log_accumulator))
df = pd.DataFrame(all_results)
plot_model_avg_scores_buffer, plot_prompt_clip_scores_buffer = None, None
csv_file_path_out, json_file_path_out = None, None
if not df.empty:
numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"]
for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce')
df_model_plot = df[(df["Model Name"] != "N/A") & (df["Model Name"].notna())]
if not df_model_plot.empty and df_model_plot["Model Name"].nunique() > 0:
try:
model_avg_scores = df_model_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all')
if not model_avg_scores.empty:
fig1, ax1 = plt.subplots(figsize=(12, 7)); model_avg_scores.plot(kind="bar", ax=ax1)
ax1.set_title("Average Scores per Model"); ax1.set_ylabel("Average Score")
ax1.tick_params(axis='x', rotation=45, labelsize=8); plt.tight_layout()
plot_model_avg_scores_buffer = io.BytesIO(); fig1.savefig(plot_model_avg_scores_buffer, format="png"); plot_model_avg_scores_buffer.seek(0); plt.close(fig1)
log_accumulator.append("INFO: Model average scores plot generated.")
except Exception as e: log_accumulator.append(f"ERROR: Failed to generate model average scores plot: {e}")
df_prompt_plot = df[(df["Prompt"] != "N/A") & (df["Prompt"].notna()) & (df["CLIPScore"].notna())]
if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0 :
try:
df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (str(x)[:30] + '...') if len(str(x)) > 33 else str(x))
prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False)
if not prompt_clip_scores.empty and len(prompt_clip_scores) >= 1 :
fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15))))
prompt_clip_scores.head(20).plot(kind="barh", ax=ax2)
ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)"); ax2.set_xlabel("Average CLIPScore")
plt.tight_layout(); plot_prompt_clip_scores_buffer = io.BytesIO(); fig2.savefig(plot_prompt_clip_scores_buffer, format="png"); plot_prompt_clip_scores_buffer.seek(0); plt.close(fig2)
log_accumulator.append("INFO: Prompt CLIP scores plot generated.")
except Exception as e: log_accumulator.append(f"ERROR: Failed to generate prompt CLIP scores plot: {e}")
try:
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".csv", encoding='utf-8') as tmp_csv:
df.to_csv(tmp_csv, index=False); csv_file_path_out = tmp_csv.name
with tempfile.NamedTemporaryFile(mode="w+", delete=False, suffix=".json", encoding='utf-8') as tmp_json:
df.to_json(tmp_json, orient='records', indent=4); json_file_path_out = tmp_json.name
log_accumulator.append("INFO: CSV and JSON data prepared for download.")
except Exception as e: log_accumulator.append(f"ERROR preparing download files: {e}")
final_status = f"Finished processing {len(all_results)} images."
log_accumulator.append(final_status)
# Преобразуем BytesIO в PIL.Image перед передачей в gr.Image
pil_plot_model_avg = Image.open(plot_model_avg_scores_buffer) if plot_model_avg_scores_buffer and plot_model_avg_scores_buffer.getbuffer().nbytes > 0 else None
pil_plot_prompt_clip = Image.open(plot_prompt_clip_scores_buffer) if plot_prompt_clip_scores_buffer and plot_prompt_clip_scores_buffer.getbuffer().nbytes > 0 else None
if pil_plot_model_avg or pil_plot_prompt_clip:
log_accumulator.append("INFO: Plots converted to PIL Images for display.")
else:
log_accumulator.append("INFO: No plots were generated or plots are empty.")
yield (
df,
gr.Image(value=pil_plot_model_avg, visible=pil_plot_model_avg is not None),
gr.Image(value=pil_plot_prompt_clip, visible=pil_plot_prompt_clip is not None),
gr.File(value=csv_file_path_out, visible=csv_file_path_out is not None),
gr.File(value=json_file_path_out, visible=json_file_path_out is not None),
final_status,
"\n".join(log_accumulator)
)
with gr.Blocks(css="footer {display: none !important}") as demo:
gr.Markdown("# AI Image Model Evaluation Tool")
gr.Markdown("Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them...")
with gr.Row(): image_uploader = gr.Files(label="Upload Images (PNG)", file_count="multiple", file_types=["image"])
process_button = gr.Button("Evaluate Images", variant="primary")
status_textbox = gr.Textbox(label="Overall Status", interactive=False)
log_output_textbox = gr.Textbox(label="Detailed Logs", lines=15, interactive=False, autoscroll=True)
gr.Markdown("## Evaluation Results Table")
results_table = gr.DataFrame(headers=[
"Filename", "Prompt", "Model Name", "Model Hash", "ImageReward", "AnimeAesthetic_dg",
"MANIQA_TQ", "CLIPScore", "SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob"
], wrap=True)
with gr.Row():
download_csv_button = gr.File(label="Download CSV Results", interactive=False)
download_json_button = gr.File(label="Download JSON Results", interactive=False)
gr.Markdown("## Visualizations")
with gr.Row():
plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False)
plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False)
process_button.click(
fn=process_images_generator, inputs=[image_uploader],
outputs=[results_table, plot_output_model_avg, plot_output_prompt_clip,
download_csv_button, download_json_button, status_textbox, log_output_textbox]
)
gr.Markdown("""**Metric Explanations:** ... (без изменений)""")
if __name__ == "__main__":
print("--- Initializing models, please wait... ---")
initial_dummy_logs = []
if onnxruntime:
get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER, initial_dummy_logs)
get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER, initial_dummy_logs)
if initial_dummy_logs:
print("--- Initial ONNX loading attempts log: ---")
for log_line in initial_dummy_logs: print(log_line)
print("-----------------------------------------")
print("--- Model initialization attempt complete. Launching Gradio. ---")
demo.queue().launch(debug=True) |