Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image, PngImagePlugin | |
import io | |
import os | |
import pandas as pd | |
import torch | |
from transformers import pipeline as transformers_pipeline , AutoImageProcessor, AutoModelForImageClassification | |
# from torchvision import transforms # Менее релевантно для ONNX пайплайна | |
from torchmetrics.functional.multimodal import clip_score | |
from open_clip import create_model_from_pretrained, get_tokenizer | |
import re | |
import matplotlib.pyplot as plt | |
import json | |
from collections import defaultdict | |
import numpy as np | |
import logging # Для логирования ONNX | |
# --- ONNX Related Imports and Setup --- | |
try: | |
import onnxruntime | |
except ImportError: | |
print("onnxruntime not found. Please ensure it's in requirements.txt") | |
onnxruntime = None | |
from huggingface_hub import hf_hub_download | |
# imgutils для rgb_encode (если установлен) | |
try: | |
from imgutils.data import rgb_encode # Предполагаем, что это правильный импорт | |
except ImportError: | |
print("imgutils.data.rgb_encode not found. Preprocessing for deepghs might be limited.") | |
def rgb_encode(image, order_='CHW'): # Простая заглушка, если imgutils нет | |
img_arr = np.array(image) | |
if order_ == 'CHW': | |
img_arr = np.transpose(img_arr, (2, 0, 1)) | |
return img_arr.astype(np.float32) / 255.0 # Базовая нормализация, если не указана другая | |
# --- Модель Конфигурация и Загрузка --- | |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Using device: {DEVICE}") | |
ONNX_DEVICE = "CUDAExecutionProvider" if DEVICE == "cuda" and onnxruntime and "CUDAExecutionProvider" in onnxruntime.get_available_providers() else "CPUExecutionProvider" | |
print(f"Using ONNX device: {ONNX_DEVICE}") | |
# --- Helper for ONNX models (deepghs) --- | |
def _img_preprocess_for_onnx(image: Image.Image, size: tuple = (384, 384), normalize_mean=0.5, normalize_std=0.5): | |
image = image.resize(size, Image.Resampling.BILINEAR) # Обновлено до Resampling | |
data = rgb_encode(image, order_='CHW') # (C, H, W), float32, 0-1 range from common imgutils | |
# Нормализация ((data / 255.0) - mean) / std, если data в 0-255 | |
# Если rgb_encode уже возвращает 0-1, то (data - mean) / std | |
# Предположим, rgb_encode возвращает [0,1] диапазон float32 | |
mean = np.array([normalize_mean] * 3, dtype=np.float32).reshape((3, 1, 1)) | |
std = np.array([normalize_std] * 3, dtype=np.float32).reshape((3, 1, 1)) | |
normalized_data = (data - mean) / std | |
return normalized_data[None, ...].astype(np.float32) # Add batch dimension | |
onnx_sessions_cache = {} # Кэш для ONNX сессий и метаданных | |
def get_onnx_session_and_meta(repo_id, model_subfolder): | |
cache_key = f"{repo_id}/{model_subfolder}" | |
if cache_key in onnx_sessions_cache: | |
return onnx_sessions_cache[cache_key] | |
if not onnxruntime: | |
raise ImportError("ONNX Runtime is not available.") | |
try: | |
model_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/model.onnx") | |
meta_path = hf_hub_download(repo_id, filename=f"{model_subfolder}/meta.json") | |
options = onnxruntime.SessionOptions() | |
options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
if ONNX_DEVICE == "CPUExecutionProvider": | |
options.intra_op_num_threads = os.cpu_count() | |
session = onnxruntime.InferenceSession(model_path, options, providers=[ONNX_DEVICE]) | |
with open(meta_path, 'r') as f: | |
meta = json.load(f) | |
labels = meta.get('labels', []) | |
onnx_sessions_cache[cache_key] = (session, labels, meta) | |
return session, labels, meta | |
except Exception as e: | |
print(f"Error loading ONNX model {repo_id}/{model_subfolder}: {e}") | |
onnx_sessions_cache[cache_key] = (None, [], None) # Кэшируем ошибку | |
return None, [], None | |
# 1. ImageReward | |
try: | |
reward_processor = AutoImageProcessor.from_pretrained("THUDM/ImageReward") | |
reward_model = AutoModelForImageClassification.from_pretrained("THUDM/ImageReward").to(DEVICE) | |
reward_model.eval() | |
except Exception as e: | |
print(f"Error loading THUDM/ImageReward: {e}") | |
reward_processor, reward_model = None, None | |
# 2. Anime Aesthetic (deepghs ONNX) | |
# Модель: deepghs/anime_aesthetic, подпапка: swinv2pv3_v0_448_ls0.2_x | |
ANIME_AESTHETIC_REPO = "deepghs/anime_aesthetic" | |
ANIME_AESTHETIC_SUBFOLDER = "swinv2pv3_v0_448_ls0.2_x" | |
ANIME_AESTHETIC_IMG_SIZE = (448, 448) | |
# Метки из meta.json: ["normal", "slight", "moderate", "strong", "extreme"] | |
# Веса для взвешенной суммы: | |
ANIME_AESTHETIC_LABEL_WEIGHTS = {"normal": 0.0, "slight": 1.0, "moderate": 2.0, "strong": 3.0, "extreme": 4.0} | |
# 3. MANIQA (Technical Quality) - Transformers pipeline | |
try: | |
maniqa_pipe = transformers_pipeline("image-classification", model="honklers/maniqa-nr", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1) | |
except Exception as e: | |
print(f"Error loading honklers/maniqa-nr: {e}") | |
maniqa_pipe = None | |
# 4. CLIP Score (laion/CLIP-ViT-L-14-laion2B-s32B-b82K) - open_clip | |
try: | |
clip_model_name = 'ViT-L-14' | |
clip_pretrained = 'laion2b_s32b_b82k' # laion2B-s32B-b82K | |
clip_model_instance, _, clip_preprocess = create_model_from_pretrained(clip_model_name, pretrained=clip_pretrained, device=DEVICE) | |
clip_tokenizer = get_tokenizer(clip_model_name) | |
clip_model_instance.eval() | |
except Exception as e: | |
print(f"Error loading CLIP model {clip_model_name} ({clip_pretrained}): {e}") | |
clip_model_instance, clip_preprocess, clip_tokenizer = None, None, None | |
# 5. AI Detectors | |
# Organika/sdxl-detector - Transformers pipeline | |
try: | |
sdxl_detector_pipe = transformers_pipeline("image-classification", model="Organika/sdxl-detector", device=torch.device(DEVICE).index if DEVICE=="cuda" else -1) | |
except Exception as e: | |
print(f"Error loading Organika/sdxl-detector: {e}") | |
sdxl_detector_pipe = None | |
# deepghs/anime_ai_check - ONNX | |
# Модель: deepghs/anime_ai_check, подпапка: caformer_s36_plus_sce | |
ANIME_AI_CHECK_REPO = "deepghs/anime_ai_check" | |
ANIME_AI_CHECK_SUBFOLDER = "caformer_s36_plus_sce" | |
ANIME_AI_CHECK_IMG_SIZE = (384, 384) # Предположение, если не указано иначе | |
# --- Функции извлечения метаданных (без изменений) --- | |
def extract_sd_parameters(image_pil): | |
if image_pil is None: | |
return "", "N/A", "N/A", "N/A", {} | |
parameters_str = image_pil.info.get("parameters", "") | |
if not parameters_str: | |
return "", "N/A", "N/A", "N/A", {} | |
prompt = "" | |
negative_prompt = "" | |
model_name = "N/A" | |
model_hash = "N/A" | |
other_params_dict = {} | |
neg_prompt_index = parameters_str.find("Negative prompt:") | |
steps_meta_index = parameters_str.find("Steps:") # Ищем начало блока с параметрами | |
if neg_prompt_index != -1: | |
prompt = parameters_str[:neg_prompt_index].strip() | |
# Если "Steps:" найдено после "Negative prompt:", то neg_prompt между ними | |
if steps_meta_index != -1 and steps_meta_index > neg_prompt_index: | |
negative_prompt = parameters_str[neg_prompt_index + len("Negative prompt:"):steps_meta_index].strip() | |
params_part = parameters_str[steps_meta_index:] | |
else: # "Steps:" не найдено или до "Negative prompt:", значит neg_prompt до конца строки или до params_part | |
# Если params_part вообще нет, то neg_prompt до конца строки | |
end_of_neg_prompt = parameters_str.find("\n", neg_prompt_index) # Ищем конец строки для негативного промпта | |
if end_of_neg_prompt == -1: end_of_neg_prompt = len(parameters_str) | |
search_params_in_rest = parameters_str[neg_prompt_index + len("Negative prompt:"):] | |
actual_steps_index_in_rest = search_params_in_rest.find("Steps:") | |
if actual_steps_index_in_rest != -1: | |
negative_prompt = search_params_in_rest[:actual_steps_index_in_rest].strip() | |
params_part = search_params_in_rest[actual_steps_index_in_rest:] | |
else: # Нет "Steps:" после "Negative prompt:" | |
negative_prompt = search_params_in_rest.strip() # Берем все как негативный | |
params_part = "" # Нет блока параметров | |
else: # "Negative prompt:" не найдено | |
# Если "Steps:" найдено, то промпт до него | |
if steps_meta_index != -1: | |
prompt = parameters_str[:steps_meta_index].strip() | |
params_part = parameters_str[steps_meta_index:] | |
else: # Нет ни "Negative prompt:", ни "Steps:", весь текст - это промпт | |
prompt = parameters_str.strip() | |
params_part = "" | |
if not prompt and not negative_prompt and not params_part: # Если все пусто, возможно, это просто параметры | |
params_part = parameters_str | |
if params_part: | |
params_list = [p.strip() for p in params_part.split(",")] | |
temp_other_params = {} | |
for param_val_str in params_list: | |
parts = param_val_str.split(':', 1) | |
if len(parts) == 2: | |
key, value = parts[0].strip(), parts[1].strip() | |
temp_other_params[key] = value | |
if key == "Model": model_name = value | |
elif key == "Model hash": model_hash = value | |
# Добавляем в other_params_dict только то, что не "Model" и не "Model hash" | |
for k,v in temp_other_params.items(): | |
if k not in ["Model", "Model hash"]: | |
other_params_dict[k] = v | |
if model_name == "N/A" and model_hash != "N/A": model_name = f"hash_{model_hash}" | |
if model_name == "N/A" and "Checkpoint" in other_params_dict: model_name = other_params_dict["Checkpoint"] | |
return prompt, negative_prompt, model_name, model_hash, other_params_dict | |
# --- Функции оценки (обновлены для deepghs) --- | |
def get_image_reward(image_pil): | |
if not reward_model or not reward_processor: return "N/A" | |
try: | |
inputs = reward_processor(images=image_pil, return_tensors="pt").to(DEVICE) | |
outputs = reward_model(**inputs) | |
return round(outputs.logits.item(), 4) | |
except Exception as e: | |
print(f"Error in ImageReward: {e}") | |
return "Error" | |
def get_anime_aesthetic_score_deepghs(image_pil): | |
session, labels, meta = get_onnx_session_and_meta(ANIME_AESTHETIC_REPO, ANIME_AESTHETIC_SUBFOLDER) | |
if not session or not labels: return "N/A" | |
try: | |
input_data = _img_preprocess_for_onnx(image_pil, size=ANIME_AESTHETIC_IMG_SIZE) | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
onnx_output, = session.run([output_name], {input_name: input_data}) | |
scores = onnx_output[0] # Должен быть массив вероятностей/логитов | |
# Применение softmax если это логиты (обычно модели классификации ONNX возвращают логиты) | |
exp_scores = np.exp(scores - np.max(scores)) # Вычитаем max для стабильности softmax | |
probabilities = exp_scores / np.sum(exp_scores) | |
weighted_score = 0.0 | |
for i, label in enumerate(labels): | |
if label in ANIME_AESTHETIC_LABEL_WEIGHTS: | |
weighted_score += probabilities[i] * ANIME_AESTHETIC_LABEL_WEIGHTS[label] | |
return round(weighted_score, 4) | |
except Exception as e: | |
print(f"Error in Anime Aesthetic (ONNX): {e}") | |
return "Error" | |
def get_maniqa_score(image_pil): | |
if not maniqa_pipe: return "N/A" | |
try: | |
result = maniqa_pipe(image_pil.copy()) | |
score = 0.0 | |
# Ищем метку, которая соответствует высокому качеству | |
# honklers/maniqa-nr может иметь 'LABEL_0', 'LABEL_1' или 'Good Quality', 'Bad Quality' | |
# Проверьте model card. Предположим, более высокий скор для первой метки - хорошо. | |
# В данном случае, `honklers/maniqa-nr` выводит [{'label': 'Bad Quality', 'score': 0.9}, {'label': 'Good Quality', 'score': 0.1}] | |
# Ищем 'Good Quality' | |
for item in result: | |
if item['label'].lower() == 'good quality': # или другой позитивный лейбл | |
score = item['score'] | |
break | |
# Если нет "Good Quality", но есть что-то вроде LABEL_1 (положительный) | |
# elif item['label'] == 'LABEL_1': # Пример, если метки такие | |
# score = item['score'] | |
# break | |
if score == 0.0 and result: # Если "Good Quality" не найдено, но есть результат | |
# Пробуем взять максимальный скор, если метки непонятные, но это рискованно | |
# Либо ищем специфичные метки из model card | |
pass # Оставляем 0.0 если не найдена позитивная метка | |
return round(score, 4) | |
except Exception as e: | |
print(f"Error in MANIQA: {e}") | |
return "Error" | |
def calculate_clip_score_value(image_pil, prompt_text): # Изменено имя, чтобы не конфликтовать с torchmetrics.clip_score | |
if not clip_model_instance or not clip_preprocess or not clip_tokenizer or not prompt_text or prompt_text == "N/A": | |
return "N/A" | |
try: | |
image_input = clip_preprocess(image_pil).unsqueeze(0).to(DEVICE) | |
text_input = clip_tokenizer([str(prompt_text)]).to(DEVICE) | |
image_features = clip_model_instance.encode_image(image_input) | |
text_features = clip_model_instance.encode_text(text_input) | |
image_features_norm = image_features / image_features.norm(p=2, dim=-1, keepdim=True) | |
text_features_norm = text_features / text_features.norm(p=2, dim=-1, keepdim=True) | |
score = (text_features_norm @ image_features_norm.T).squeeze().item() * 100.0 | |
return round(score, 2) | |
except Exception as e: | |
print(f"Error in CLIP Score: {e}") | |
return "Error" | |
def get_sdxl_detection_score(image_pil): | |
if not sdxl_detector_pipe: return "N/A" | |
try: | |
result = sdxl_detector_pipe(image_pil.copy()) | |
ai_score = 0.0 | |
# Organika/sdxl-detector метки: 'artificial', 'real' | |
for item in result: | |
if item['label'].lower() == 'artificial': | |
ai_score = item['score'] | |
break | |
return round(ai_score, 4) | |
except Exception as e: | |
print(f"Error in SDXL Detector: {e}") | |
return "Error" | |
def get_anime_ai_check_score_deepghs(image_pil): | |
session, labels, meta = get_onnx_session_and_meta(ANIME_AI_CHECK_REPO, ANIME_AI_CHECK_SUBFOLDER) | |
if not session or not labels: return "N/A" | |
try: | |
input_data = _img_preprocess_for_onnx(image_pil, size=ANIME_AI_CHECK_IMG_SIZE) | |
input_name = session.get_inputs()[0].name | |
output_name = session.get_outputs()[0].name | |
onnx_output, = session.run([output_name], {input_name: input_data}) | |
scores = onnx_output[0] | |
exp_scores = np.exp(scores - np.max(scores)) | |
probabilities = exp_scores / np.sum(exp_scores) | |
ai_prob = 0.0 | |
for i, label in enumerate(labels): | |
if label.lower() == 'ai': # Ищем метку 'ai' | |
ai_prob = probabilities[i] | |
break | |
return round(ai_prob, 4) | |
except Exception as e: | |
print(f"Error in Anime AI Check (ONNX): {e}") | |
return "Error" | |
# --- Основная функция обработки --- | |
def process_images(files, progress=gr.Progress(track_tqdm=True)): | |
if not files: | |
return pd.DataFrame(), None, None, None, None, "Please upload some images." | |
all_results = [] | |
# progress(0, desc="Starting processing...") # track_tqdm сделает это | |
for i, file_obj in enumerate(files): | |
try: | |
# В HF Spaces file_obj может быть именем временного файла или объектом с атрибутом name | |
filename = os.path.basename(getattr(file_obj, 'name', str(file_obj))) # getattr для совместимости | |
# progress((i+1)/len(files), desc=f"Processing {filename}") # track_tqdm | |
img = Image.open(getattr(file_obj, 'name', str(file_obj))) | |
if img.mode != "RGB": | |
img = img.convert("RGB") | |
prompt, neg_prompt, model_n, model_h, other_p = extract_sd_parameters(img) | |
# Оценки | |
reward = get_image_reward(img.copy()) | |
anime_aes_deepghs = get_anime_aesthetic_score_deepghs(img.copy()) | |
maniqa = get_maniqa_score(img.copy()) | |
clip_val = calculate_clip_score_value(img.copy(), prompt) # Изменено имя функции | |
sdxl_detect = get_sdxl_detection_score(img.copy()) | |
anime_ai_chk_deepghs = get_anime_ai_check_score_deepghs(img.copy()) | |
result_entry = { | |
"Filename": filename, | |
"Prompt": prompt if prompt else "N/A", | |
"Model Name": model_n, | |
"Model Hash": model_h, | |
"ImageReward": reward, | |
"AnimeAesthetic_dg": anime_aes_deepghs, # dg = deepghs | |
"MANIQA_TQ": maniqa, | |
"CLIPScore": clip_val, | |
"SDXL_Detector_AI_Prob": sdxl_detect, | |
"AnimeAI_Check_dg_Prob": anime_ai_chk_deepghs, # dg = deepghs | |
} | |
all_results.append(result_entry) | |
except Exception as e: | |
print(f"Failed to process {getattr(file_obj, 'name', str(file_obj))}: {e}") | |
all_results.append({ | |
"Filename": os.path.basename(getattr(file_obj, 'name', str(file_obj))) if file_obj else "Unknown File", | |
"Prompt": "Error", "Model Name": "Error", "Model Hash": "Error", | |
"ImageReward": "Error", "AnimeAesthetic_dg": "Error", "MANIQA_TQ": "Error", | |
"CLIPScore": "Error", "SDXL_Detector_AI_Prob": "Error", "AnimeAI_Check_dg_Prob": "Error" | |
}) | |
df = pd.DataFrame(all_results) | |
plot_model_avg_scores_buffer = None | |
if "Model Name" in df.columns and df["Model Name"].nunique() > 0 and df["Model Name"].count() > 0 : | |
numeric_cols = ["ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore"] | |
for col in numeric_cols: df[col] = pd.to_numeric(df[col], errors='coerce') | |
try: | |
# Фильтруем модели "N/A" перед группировкой для графика | |
df_for_plot = df[df["Model Name"] != "N/A"] | |
if not df_for_plot.empty and df_for_plot["Model Name"].nunique() > 0 : | |
model_avg_scores = df_for_plot.groupby("Model Name")[numeric_cols].mean().dropna(how='all') | |
if not model_avg_scores.empty: | |
fig1, ax1 = plt.subplots(figsize=(12, 7)) | |
model_avg_scores.plot(kind="bar", ax=ax1) | |
ax1.set_title("Average Scores per Model") | |
ax1.set_ylabel("Average Score") | |
ax1.tick_params(axis='x', rotation=45, labelsize=8) | |
plt.tight_layout() | |
plot_model_avg_scores_buffer = io.BytesIO() | |
fig1.savefig(plot_model_avg_scores_buffer, format="png") | |
plot_model_avg_scores_buffer.seek(0) | |
plt.close(fig1) | |
except Exception as e: print(f"Error generating model average scores plot: {e}") | |
plot_prompt_clip_scores_buffer = None | |
if "Prompt" in df.columns and "CLIPScore" in df.columns and df["Prompt"].nunique() > 0: | |
df["CLIPScore"] = pd.to_numeric(df["CLIPScore"], errors='coerce') | |
df_prompt_plot = df[df["Prompt"] != "N/A"].dropna(subset=["CLIPScore"]) | |
if not df_prompt_plot.empty and df_prompt_plot["Prompt"].nunique() > 0: | |
try: | |
# Сокращаем длинные промпты для графика | |
df_prompt_plot["Short Prompt"] = df_prompt_plot["Prompt"].apply(lambda x: (x[:30] + '...') if len(x) > 33 else x) | |
prompt_clip_scores = df_prompt_plot.groupby("Short Prompt")["CLIPScore"].mean().sort_values(ascending=False) | |
if not prompt_clip_scores.empty and len(prompt_clip_scores) > 1 : | |
fig2, ax2 = plt.subplots(figsize=(12, max(7, min(len(prompt_clip_scores)*0.5, 15)))) # Ограничиваем высоту | |
prompt_clip_scores.head(20).plot(kind="barh", ax=ax2) | |
ax2.set_title("Average CLIPScore per Prompt (Top 20 unique prompts)") | |
ax2.set_xlabel("Average CLIPScore") | |
plt.tight_layout() | |
plot_prompt_clip_scores_buffer = io.BytesIO() | |
fig2.savefig(plot_prompt_clip_scores_buffer, format="png") | |
plot_prompt_clip_scores_buffer.seek(0) | |
plt.close(fig2) | |
except Exception as e: print(f"Error generating prompt CLIP scores plot: {e}") | |
csv_buffer_val = "" | |
if not df.empty: | |
csv_buffer = io.StringIO() | |
df.to_csv(csv_buffer, index=False) | |
csv_buffer_val = csv_buffer.getvalue() | |
json_buffer_val = "" | |
if not df.empty: | |
json_buffer = io.StringIO() | |
df.to_json(json_buffer, orient='records', indent=4) | |
json_buffer_val = json_buffer.getvalue() | |
return ( | |
df, | |
gr.Image(value=plot_model_avg_scores_buffer, type="pil", visible=plot_model_avg_scores_buffer is not None), | |
gr.Image(value=plot_prompt_clip_scores_buffer, type="pil", visible=plot_prompt_clip_scores_buffer is not None), | |
gr.File(value=csv_buffer_val if csv_buffer_val else None, label="Download CSV Results", visible=bool(csv_buffer_val), file_name="evaluation_results.csv"), | |
gr.File(value=json_buffer_val if json_buffer_val else None, label="Download JSON Results", visible=bool(json_buffer_val), file_name="evaluation_results.json"), | |
f"Processed {len(all_results)} images.", | |
) | |
# --- Интерфейс Gradio --- | |
with gr.Blocks(css="footer {display: none !important}") as demo: | |
gr.Markdown("# AI Image Model Evaluation Tool") | |
gr.Markdown( | |
"Upload PNG images (ideally with Stable Diffusion metadata) to evaluate them using various metrics. " | |
"Results will be displayed in a table and visualized in charts." | |
) | |
with gr.Row(): | |
image_uploader = gr.Files( | |
label="Upload Images (PNG)", | |
file_count="multiple", | |
file_types=["image"], | |
) | |
process_button = gr.Button("Evaluate Images", variant="primary") | |
status_textbox = gr.Textbox(label="Status", interactive=False) | |
gr.Markdown("## Evaluation Results Table") | |
results_table = gr.DataFrame(headers=[ | |
"Filename", "Prompt", "Model Name", "Model Hash", | |
"ImageReward", "AnimeAesthetic_dg", "MANIQA_TQ", "CLIPScore", | |
"SDXL_Detector_AI_Prob", "AnimeAI_Check_dg_Prob" | |
], wrap=True, max_rows=10) # Ограничиваем начальное отображение строк | |
with gr.Row(): | |
download_csv_button = gr.File(label="Download CSV Results", interactive=False) # visible управляется из output | |
download_json_button = gr.File(label="Download JSON Results", interactive=False) | |
gr.Markdown("## Visualizations") | |
with gr.Row(): | |
plot_output_model_avg = gr.Image(label="Average Scores per Model", type="pil", interactive=False) | |
plot_output_prompt_clip = gr.Image(label="Average CLIPScore per Prompt", type="pil", interactive=False) | |
process_button.click( | |
fn=process_images, | |
inputs=[image_uploader], | |
outputs=[ | |
results_table, | |
plot_output_model_avg, | |
plot_output_prompt_clip, | |
download_csv_button, | |
download_json_button, | |
status_textbox | |
] | |
) | |
gr.Markdown( | |
""" | |
**Metric Explanations:** | |
- **ImageReward:** General aesthetic and prompt alignment score (higher is better). From THUDM. | |
- **AnimeAesthetic_dg:** Aesthetic level for anime style (0-4, higher is better quality level: normal, slight, moderate, strong, extreme). From deepghs (ONNX). | |
- **MANIQA_TQ:** Technical Quality score (no-reference), higher indicates better quality (less noise/artifacts). Based on MANIQA. | |
- **CLIPScore:** Semantic similarity between the image and its prompt (0-100, higher is better). Uses LAION's CLIP. | |
- **SDXL_Detector_AI_Prob:** Estimated probability that the image is AI-generated (higher means more likely AI). From Organika. | |
- **AnimeAI_Check_dg_Prob:** Estimated probability that an anime-style image is AI-generated (higher means more likely AI). From deepghs (ONNX). | |
*Processing can take time, especially for many images or on CPU.* | |
""" | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) |