import timm import json import torch from torchaudio.functional import resample import numpy as np from torchaudio.compliance import kaldi import torch.nn.functional as F import requests TAG = "gaunernst/vit_base_patch16_1024_128.audiomae_as2m_ft_as20k" MODEL = timm.create_model(f"hf_hub:{TAG}", pretrained=True).eval() LABEL_URL = "https://huggingface.co/datasets/huggingface/label-files/raw/main/audioset-id2label.json" AUDIOSET_LABELS = list(json.loads(requests.get(LABEL_URL).content).values()) SAMPLING_RATE = 16_000 MEAN = -4.2677393 STD = 4.5689974 def preprocess(x: torch.Tensor): x = x - x.mean() melspec = kaldi.fbank(x.unsqueeze(0), htk_compat=True, window_type="hanning", num_mel_bins=128) if melspec.shape[0] < 1024: melspec = F.pad(melspec, (0, 0, 0, 1024 - melspec.shape[0])) else: melspec = melspec[:1024] melspec = (melspec - MEAN) / (STD * 2) return melspec def predict_class(x, sr, start, end): x = torch.from_numpy(x) if x.ndim > 1: x = x.mean(-1) assert x.ndim == 1 x = resample(x[int(start * sr) : int(end * sr)], sr, SAMPLING_RATE) x = preprocess(x) with torch.inference_mode(): logits = MODEL(x.view(1, 1, 1024, 128)).squeeze(0) topk_probs, topk_classes = logits.sigmoid().topk(10) preds = [[AUDIOSET_LABELS[cls], prob.item()*100] for cls, prob in zip(topk_classes, topk_probs)] return preds