|
|
|
|
|
|
|
|
|
|
|
|
|
from __future__ import annotations
|
|
|
|
import gradio as gr
|
|
import numpy as np
|
|
import torch
|
|
import torchaudio
|
|
from huggingface_hub import hf_hub_download
|
|
from seamless_communication.models.inference.translator import Translator
|
|
|
|
DESCRIPTION = """
|
|
|
|
# SM4T
|
|
|
|
Ứng dụng có thể chuyển đổi giọng nói hoặc chữ viết sang giọng nói hoặc chữ viết của một ngôn ngữ khác.
|
|
\nHiện tại SM4T đã hỗ trợ 94 ngôn ngữ khác nhau.
|
|
|
|
"""
|
|
|
|
TASK_NAMES = [
|
|
"S2ST (Speech to Speech translation)",
|
|
"S2TT (Speech to Text translation)",
|
|
"T2ST (Text to Speech translation)",
|
|
"T2TT (Text to Text translation)",
|
|
"ASR (Automatic Speech Recognition)",
|
|
]
|
|
|
|
|
|
language_code_to_name = {
|
|
"afr": "Afrikaans",
|
|
"amh": "Amharic",
|
|
"arb": "Modern Standard Arabic",
|
|
"ary": "Moroccan Arabic",
|
|
"arz": "Egyptian Arabic",
|
|
"asm": "Assamese",
|
|
"ast": "Asturian",
|
|
"azj": "North Azerbaijani",
|
|
"bel": "Belarusian",
|
|
"ben": "Bengali",
|
|
"bos": "Bosnian",
|
|
"bul": "Bulgarian",
|
|
"cat": "Catalan",
|
|
"ceb": "Cebuano",
|
|
"ces": "Czech",
|
|
"ckb": "Central Kurdish",
|
|
"cmn": "Mandarin Chinese",
|
|
"cym": "Welsh",
|
|
"dan": "Danish",
|
|
"deu": "German",
|
|
"ell": "Greek",
|
|
"eng": "English",
|
|
"est": "Estonian",
|
|
"eus": "Basque",
|
|
"fin": "Finnish",
|
|
"fra": "French",
|
|
"gaz": "West Central Oromo",
|
|
"gle": "Irish",
|
|
"glg": "Galician",
|
|
"guj": "Gujarati",
|
|
"heb": "Hebrew",
|
|
"hin": "Hindi",
|
|
"hrv": "Croatian",
|
|
"hun": "Hungarian",
|
|
"hye": "Armenian",
|
|
"ibo": "Igbo",
|
|
"ind": "Indonesian",
|
|
"isl": "Icelandic",
|
|
"ita": "Italian",
|
|
"jav": "Javanese",
|
|
"jpn": "Japanese",
|
|
"kam": "Kamba",
|
|
"kan": "Kannada",
|
|
"kat": "Georgian",
|
|
"kaz": "Kazakh",
|
|
"kea": "Kabuverdianu",
|
|
"khk": "Halh Mongolian",
|
|
"khm": "Khmer",
|
|
"kir": "Kyrgyz",
|
|
"kor": "Korean",
|
|
"lao": "Lao",
|
|
"lit": "Lithuanian",
|
|
"ltz": "Luxembourgish",
|
|
"lug": "Ganda",
|
|
"luo": "Luo",
|
|
"lvs": "Standard Latvian",
|
|
"mai": "Maithili",
|
|
"mal": "Malayalam",
|
|
"mar": "Marathi",
|
|
"mkd": "Macedonian",
|
|
"mlt": "Maltese",
|
|
"mni": "Meitei",
|
|
"mya": "Burmese",
|
|
"nld": "Dutch",
|
|
"nno": "Norwegian Nynorsk",
|
|
"nob": "Norwegian Bokm\u00e5l",
|
|
"npi": "Nepali",
|
|
"nya": "Nyanja",
|
|
"oci": "Occitan",
|
|
"ory": "Odia",
|
|
"pan": "Punjabi",
|
|
"pbt": "Southern Pashto",
|
|
"pes": "Western Persian",
|
|
"pol": "Polish",
|
|
"por": "Portuguese",
|
|
"ron": "Romanian",
|
|
"rus": "Russian",
|
|
"slk": "Slovak",
|
|
"slv": "Slovenian",
|
|
"sna": "Shona",
|
|
"snd": "Sindhi",
|
|
"som": "Somali",
|
|
"spa": "Spanish",
|
|
"srp": "Serbian",
|
|
"swe": "Swedish",
|
|
"swh": "Swahili",
|
|
"tam": "Tamil",
|
|
"tel": "Telugu",
|
|
"tgk": "Tajik",
|
|
"tgl": "Tagalog",
|
|
"tha": "Thai",
|
|
"tur": "Turkish",
|
|
"ukr": "Ukrainian",
|
|
"urd": "Urdu",
|
|
"uzn": "Northern Uzbek",
|
|
"vie": "Vietnamese",
|
|
"xho": "Xhosa",
|
|
"yor": "Yoruba",
|
|
"yue": "Cantonese",
|
|
"zlm": "Colloquial Malay",
|
|
"zsm": "Standard Malay",
|
|
"zul": "Zulu",
|
|
}
|
|
LANGUAGE_NAME_TO_CODE = {v: k for k, v in language_code_to_name.items()}
|
|
|
|
|
|
|
|
text_source_language_codes = [
|
|
"afr",
|
|
"amh",
|
|
"arb",
|
|
"ary",
|
|
"arz",
|
|
"asm",
|
|
"azj",
|
|
"bel",
|
|
"ben",
|
|
"bos",
|
|
"bul",
|
|
"cat",
|
|
"ceb",
|
|
"ces",
|
|
"ckb",
|
|
"cmn",
|
|
"cym",
|
|
"dan",
|
|
"deu",
|
|
"ell",
|
|
"eng",
|
|
"est",
|
|
"eus",
|
|
"fin",
|
|
"fra",
|
|
"gaz",
|
|
"gle",
|
|
"glg",
|
|
"guj",
|
|
"heb",
|
|
"hin",
|
|
"hrv",
|
|
"hun",
|
|
"hye",
|
|
"ibo",
|
|
"ind",
|
|
"isl",
|
|
"ita",
|
|
"jav",
|
|
"jpn",
|
|
"kan",
|
|
"kat",
|
|
"kaz",
|
|
"khk",
|
|
"khm",
|
|
"kir",
|
|
"kor",
|
|
"lao",
|
|
"lit",
|
|
"lug",
|
|
"luo",
|
|
"lvs",
|
|
"mai",
|
|
"mal",
|
|
"mar",
|
|
"mkd",
|
|
"mlt",
|
|
"mni",
|
|
"mya",
|
|
"nld",
|
|
"nno",
|
|
"nob",
|
|
"npi",
|
|
"nya",
|
|
"ory",
|
|
"pan",
|
|
"pbt",
|
|
"pes",
|
|
"pol",
|
|
"por",
|
|
"ron",
|
|
"rus",
|
|
"slk",
|
|
"slv",
|
|
"sna",
|
|
"snd",
|
|
"som",
|
|
"spa",
|
|
"srp",
|
|
"swe",
|
|
"swh",
|
|
"tam",
|
|
"tel",
|
|
"tgk",
|
|
"tgl",
|
|
"tha",
|
|
"tur",
|
|
"ukr",
|
|
"urd",
|
|
"uzn",
|
|
"vie",
|
|
"yor",
|
|
"yue",
|
|
"zsm",
|
|
"zul",
|
|
]
|
|
TEXT_SOURCE_LANGUAGE_NAMES = sorted(
|
|
[language_code_to_name[code] for code in text_source_language_codes]
|
|
)
|
|
|
|
|
|
|
|
s2st_target_language_codes = [
|
|
"eng",
|
|
"arb",
|
|
"ben",
|
|
"cat",
|
|
"ces",
|
|
"cmn",
|
|
"cym",
|
|
"dan",
|
|
"deu",
|
|
"est",
|
|
"fin",
|
|
"fra",
|
|
"hin",
|
|
"ind",
|
|
"ita",
|
|
"jpn",
|
|
"kor",
|
|
"mlt",
|
|
"nld",
|
|
"pes",
|
|
"pol",
|
|
"por",
|
|
"ron",
|
|
"rus",
|
|
"slk",
|
|
"spa",
|
|
"swe",
|
|
"swh",
|
|
"tel",
|
|
"tgl",
|
|
"tha",
|
|
"tur",
|
|
"ukr",
|
|
"urd",
|
|
"uzn",
|
|
"vie",
|
|
]
|
|
S2ST_TARGET_LANGUAGE_NAMES = sorted(
|
|
[language_code_to_name[code] for code in s2st_target_language_codes]
|
|
)
|
|
|
|
S2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
|
|
T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
|
|
|
|
filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"]
|
|
for filename in filenames:
|
|
hf_hub_download(
|
|
repo_id="facebook/seamless_m4t",
|
|
repo_type="space",
|
|
filename=filename,
|
|
local_dir=".",
|
|
)
|
|
|
|
AUDIO_SAMPLE_RATE = 16000.0
|
|
MAX_INPUT_AUDIO_LENGTH = 60
|
|
DEFAULT_TARGET_LANGUAGE = "French"
|
|
|
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
translator = Translator(
|
|
model_name_or_card="seamlessM4T_large",
|
|
vocoder_name_or_card="vocoder_36langs",
|
|
device=device,
|
|
dtype=torch.float16 if "cuda" in device.type else torch.float32,
|
|
)
|
|
|
|
|
|
def predict(
|
|
task_name: str,
|
|
audio_source: str,
|
|
input_audio_mic: str | None,
|
|
input_audio_file: str | None,
|
|
input_text: str | None,
|
|
source_language: str | None,
|
|
target_language: str,
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
task_name = task_name.split()[0]
|
|
source_language_code = (
|
|
LANGUAGE_NAME_TO_CODE[source_language] if source_language else None
|
|
)
|
|
target_language_code = LANGUAGE_NAME_TO_CODE[target_language]
|
|
|
|
if task_name in ["S2ST", "S2TT", "ASR"]:
|
|
if audio_source == "microphone":
|
|
input_data = input_audio_mic
|
|
else:
|
|
input_data = input_audio_file
|
|
|
|
arr, org_sr = torchaudio.load(input_data)
|
|
new_arr = torchaudio.functional.resample(
|
|
arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE
|
|
)
|
|
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
|
if new_arr.shape[1] > max_length:
|
|
new_arr = new_arr[:, :max_length]
|
|
gr.Warning(
|
|
f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used."
|
|
)
|
|
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
|
else:
|
|
input_data = input_text
|
|
text_out, wav, sr = translator.predict(
|
|
input=input_data,
|
|
task_str=task_name,
|
|
tgt_lang=target_language_code,
|
|
src_lang=source_language_code,
|
|
ngram_filtering=True,
|
|
)
|
|
if task_name in ["S2ST", "T2ST"]:
|
|
return (sr, wav.cpu().detach().numpy()), text_out
|
|
else:
|
|
return None, text_out
|
|
|
|
|
|
def process_s2st_example(
|
|
input_audio_file: str, target_language: str
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
return predict(
|
|
task_name="S2ST",
|
|
audio_source="file",
|
|
input_audio_mic=None,
|
|
input_audio_file=input_audio_file,
|
|
input_text=None,
|
|
source_language=None,
|
|
target_language=target_language,
|
|
)
|
|
|
|
|
|
def process_s2tt_example(
|
|
input_audio_file: str, target_language: str
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
return predict(
|
|
task_name="S2TT",
|
|
audio_source="file",
|
|
input_audio_mic=None,
|
|
input_audio_file=input_audio_file,
|
|
input_text=None,
|
|
source_language=None,
|
|
target_language=target_language,
|
|
)
|
|
|
|
|
|
def process_t2st_example(
|
|
input_text: str, source_language: str, target_language: str
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
return predict(
|
|
task_name="T2ST",
|
|
audio_source="",
|
|
input_audio_mic=None,
|
|
input_audio_file=None,
|
|
input_text=input_text,
|
|
source_language=source_language,
|
|
target_language=target_language,
|
|
)
|
|
|
|
|
|
def process_t2tt_example(
|
|
input_text: str, source_language: str, target_language: str
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
return predict(
|
|
task_name="T2TT",
|
|
audio_source="",
|
|
input_audio_mic=None,
|
|
input_audio_file=None,
|
|
input_text=input_text,
|
|
source_language=source_language,
|
|
target_language=target_language,
|
|
)
|
|
|
|
|
|
def process_asr_example(
|
|
input_audio_file: str, target_language: str
|
|
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
|
return predict(
|
|
task_name="ASR",
|
|
audio_source="file",
|
|
input_audio_mic=None,
|
|
input_audio_file=input_audio_file,
|
|
input_text=None,
|
|
source_language=None,
|
|
target_language=target_language,
|
|
)
|
|
|
|
|
|
def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
|
|
mic = audio_source == "microphone"
|
|
return (
|
|
gr.update(visible=mic, value=None),
|
|
gr.update(visible=not mic, value=None),
|
|
)
|
|
|
|
|
|
def update_input_ui(task_name: str) -> tuple[dict, dict, dict, dict]:
|
|
task_name = task_name.split()[0]
|
|
if task_name == "S2ST":
|
|
return (
|
|
gr.update(visible=True),
|
|
gr.update(visible=False),
|
|
gr.update(visible=False),
|
|
gr.update(
|
|
visible=True,
|
|
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
),
|
|
)
|
|
elif task_name == "S2TT":
|
|
return (
|
|
gr.update(visible=True),
|
|
gr.update(visible=False),
|
|
gr.update(visible=False),
|
|
gr.update(
|
|
visible=True,
|
|
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
),
|
|
)
|
|
elif task_name == "T2ST":
|
|
return (
|
|
gr.update(visible=False),
|
|
gr.update(visible=True),
|
|
gr.update(visible=True),
|
|
gr.update(
|
|
visible=True,
|
|
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
),
|
|
)
|
|
elif task_name == "T2TT":
|
|
return (
|
|
gr.update(visible=False),
|
|
gr.update(visible=True),
|
|
gr.update(visible=True),
|
|
gr.update(
|
|
visible=True,
|
|
choices=T2TT_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
),
|
|
)
|
|
elif task_name == "ASR":
|
|
return (
|
|
gr.update(visible=True),
|
|
gr.update(visible=False),
|
|
gr.update(visible=False),
|
|
gr.update(
|
|
visible=True,
|
|
choices=S2TT_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
),
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown task: {task_name}")
|
|
|
|
|
|
def update_output_ui(task_name: str) -> tuple[dict, dict]:
|
|
task_name = task_name.split()[0]
|
|
if task_name in ["S2ST", "T2ST"]:
|
|
return (
|
|
gr.update(visible=True, value=None),
|
|
gr.update(value=None),
|
|
)
|
|
elif task_name in ["S2TT", "T2TT", "ASR"]:
|
|
return (
|
|
gr.update(visible=False, value=None),
|
|
gr.update(value=None),
|
|
)
|
|
else:
|
|
raise ValueError(f"Unknown task: {task_name}")
|
|
|
|
|
|
def update_example_ui(task_name: str) -> tuple[dict, dict, dict, dict, dict]:
|
|
task_name = task_name.split()[0]
|
|
return (
|
|
gr.update(visible=task_name == "S2ST"),
|
|
gr.update(visible=task_name == "S2TT"),
|
|
gr.update(visible=task_name == "T2ST"),
|
|
gr.update(visible=task_name == "T2TT"),
|
|
gr.update(visible=task_name == "ASR"),
|
|
)
|
|
|
|
|
|
css = """
|
|
h1 {
|
|
text-align: center;
|
|
}
|
|
|
|
.contain {
|
|
max-width: 730px;
|
|
margin: auto;
|
|
padding-top: 1.5rem;
|
|
}
|
|
"""
|
|
|
|
with gr.Blocks(css=css) as demo:
|
|
gr.Markdown(DESCRIPTION)
|
|
with gr.Group():
|
|
task_name = gr.Dropdown(
|
|
label="Task",
|
|
choices=TASK_NAMES,
|
|
value=TASK_NAMES[0],
|
|
)
|
|
with gr.Row():
|
|
source_language = gr.Dropdown(
|
|
label="Source language",
|
|
choices=TEXT_SOURCE_LANGUAGE_NAMES,
|
|
value="English",
|
|
visible=False,
|
|
)
|
|
target_language = gr.Dropdown(
|
|
label="Target language",
|
|
choices=S2ST_TARGET_LANGUAGE_NAMES,
|
|
value=DEFAULT_TARGET_LANGUAGE,
|
|
)
|
|
with gr.Row() as audio_box:
|
|
audio_source = gr.Radio(
|
|
label="Audio source",
|
|
choices=["file", "microphone"],
|
|
value="file",
|
|
)
|
|
input_audio_mic = gr.Audio(
|
|
label="Input speech",
|
|
type="filepath",
|
|
source="microphone",
|
|
visible=False,
|
|
)
|
|
input_audio_file = gr.Audio(
|
|
label="Input speech",
|
|
type="filepath",
|
|
source="upload",
|
|
visible=True,
|
|
)
|
|
input_text = gr.Textbox(label="Input text", visible=False)
|
|
with gr.Row():
|
|
btn = gr.Button("Translate")
|
|
btn_clean = gr.ClearButton([input_audio_mic, input_audio_file])
|
|
|
|
with gr.Column():
|
|
output_audio = gr.Audio(
|
|
label="Translated speech",
|
|
autoplay=False,
|
|
streaming=False,
|
|
type="numpy",
|
|
)
|
|
output_text = gr.Textbox(label="Translated text")
|
|
|
|
with gr.Row(visible=True) as s2st_example_row:
|
|
s2st_examples = gr.Examples(
|
|
examples=[
|
|
["assets/sample_input.mp3", "French"],
|
|
["assets/sample_input.mp3", "Mandarin Chinese"],
|
|
["assets/sample_input_2.mp3", "Hindi"],
|
|
["assets/sample_input_2.mp3", "Spanish"],
|
|
],
|
|
inputs=[input_audio_file, target_language],
|
|
outputs=[output_audio, output_text],
|
|
fn=process_s2st_example,
|
|
)
|
|
with gr.Row(visible=False) as s2tt_example_row:
|
|
s2tt_examples = gr.Examples(
|
|
examples=[
|
|
["assets/sample_input.mp3", "French"],
|
|
["assets/sample_input.mp3", "Mandarin Chinese"],
|
|
["assets/sample_input_2.mp3", "Hindi"],
|
|
["assets/sample_input_2.mp3", "Spanish"],
|
|
],
|
|
inputs=[input_audio_file, target_language],
|
|
outputs=[output_audio, output_text],
|
|
fn=process_s2tt_example,
|
|
)
|
|
with gr.Row(visible=False) as t2st_example_row:
|
|
t2st_examples = gr.Examples(
|
|
examples=[
|
|
["My favorite animal is the elephant.", "English", "French"],
|
|
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
|
[
|
|
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
"English",
|
|
"Hindi",
|
|
],
|
|
[
|
|
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
"English",
|
|
"Spanish",
|
|
],
|
|
],
|
|
inputs=[input_text, source_language, target_language],
|
|
outputs=[output_audio, output_text],
|
|
fn=process_t2st_example,
|
|
)
|
|
with gr.Row(visible=False) as t2tt_example_row:
|
|
t2tt_examples = gr.Examples(
|
|
examples=[
|
|
["My favorite animal is the elephant.", "English", "French"],
|
|
["My favorite animal is the elephant.", "English", "Mandarin Chinese"],
|
|
[
|
|
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
"English",
|
|
"Hindi",
|
|
],
|
|
[
|
|
"Meta AI's Seamless M4T model is democratising spoken communication across language barriers",
|
|
"English",
|
|
"Spanish",
|
|
],
|
|
],
|
|
inputs=[input_text, source_language, target_language],
|
|
outputs=[output_audio, output_text],
|
|
fn=process_t2tt_example,
|
|
)
|
|
with gr.Row(visible=False) as asr_example_row:
|
|
asr_examples = gr.Examples(
|
|
examples=[
|
|
["assets/sample_input.mp3", "English"],
|
|
["assets/sample_input_2.mp3", "English"],
|
|
],
|
|
inputs=[input_audio_file, target_language],
|
|
outputs=[output_audio, output_text],
|
|
fn=process_asr_example,
|
|
)
|
|
|
|
audio_source.change(
|
|
fn=update_audio_ui,
|
|
inputs=audio_source,
|
|
outputs=[
|
|
input_audio_mic,
|
|
input_audio_file,
|
|
],
|
|
queue=False,
|
|
api_name=False,
|
|
)
|
|
task_name.change(
|
|
fn=update_input_ui,
|
|
inputs=task_name,
|
|
outputs=[
|
|
audio_box,
|
|
input_text,
|
|
source_language,
|
|
target_language,
|
|
],
|
|
queue=False,
|
|
api_name=False,
|
|
).then(
|
|
fn=update_output_ui,
|
|
inputs=task_name,
|
|
outputs=[output_audio, output_text],
|
|
queue=False,
|
|
api_name=False,
|
|
).then(
|
|
fn=update_example_ui,
|
|
inputs=task_name,
|
|
outputs=[
|
|
s2st_example_row,
|
|
s2tt_example_row,
|
|
t2st_example_row,
|
|
t2tt_example_row,
|
|
asr_example_row,
|
|
],
|
|
queue=False,
|
|
api_name=False,
|
|
)
|
|
|
|
btn.click(
|
|
fn=predict,
|
|
inputs=[
|
|
task_name,
|
|
audio_source,
|
|
input_audio_mic,
|
|
input_audio_file,
|
|
input_text,
|
|
source_language,
|
|
target_language,
|
|
],
|
|
outputs=[output_audio, output_text],
|
|
api_name="run",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
demo.queue().launch()
|
|
|