Duy-NM
commited on
Commit
·
6fcb961
1
Parent(s):
70ea763
add api
Browse files
app.py
CHANGED
@@ -8,10 +8,12 @@ from __future__ import annotations
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
-
import torch
|
12 |
-
|
13 |
-
|
14 |
-
from
|
|
|
|
|
15 |
|
16 |
DESCRIPTION = """
|
17 |
|
@@ -290,78 +292,47 @@ T2TT_TARGET_LANGUAGE_NAMES = TEXT_SOURCE_LANGUAGE_NAMES
|
|
290 |
|
291 |
# Download sample input audio files
|
292 |
filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"]
|
293 |
-
for filename in filenames:
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
|
301 |
AUDIO_SAMPLE_RATE = 16000.0
|
302 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
303 |
DEFAULT_TARGET_LANGUAGE = "French"
|
304 |
|
305 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
306 |
-
translator = Translator(
|
307 |
-
model_name_or_card="seamlessM4T_large",
|
308 |
-
vocoder_name_or_card="vocoder_36langs",
|
309 |
-
device=device,
|
310 |
-
dtype=torch.float16 if "cuda" in device.type else torch.float32,
|
311 |
-
)
|
312 |
|
313 |
-
|
314 |
-
def predict(
|
315 |
task_name: str,
|
316 |
audio_source: str,
|
317 |
input_audio_mic: str | None,
|
318 |
input_audio_file: str | None,
|
319 |
input_text: str | None,
|
320 |
source_language: str | None,
|
321 |
-
target_language: str,
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
-
if task_name in ["S2ST", "S2TT", "ASR"]:
|
330 |
-
if audio_source == "microphone":
|
331 |
-
input_data = input_audio_mic
|
332 |
-
else:
|
333 |
-
input_data = input_audio_file
|
334 |
|
335 |
-
arr, org_sr = torchaudio.load(input_data)
|
336 |
-
new_arr = torchaudio.functional.resample(
|
337 |
-
arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE
|
338 |
-
)
|
339 |
-
max_length = int(MAX_INPUT_AUDIO_LENGTH * AUDIO_SAMPLE_RATE)
|
340 |
-
if new_arr.shape[1] > max_length:
|
341 |
-
new_arr = new_arr[:, :max_length]
|
342 |
-
gr.Warning(
|
343 |
-
f"Input audio is too long. Only the first {MAX_INPUT_AUDIO_LENGTH} seconds is used."
|
344 |
-
)
|
345 |
-
torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))
|
346 |
-
else:
|
347 |
-
input_data = input_text
|
348 |
-
text_out, wav, sr = translator.predict(
|
349 |
-
input=input_data,
|
350 |
-
task_str=task_name,
|
351 |
-
tgt_lang=target_language_code,
|
352 |
-
src_lang=source_language_code,
|
353 |
-
ngram_filtering=True,
|
354 |
-
)
|
355 |
-
if task_name in ["S2ST", "T2ST"]:
|
356 |
-
return (sr, wav.cpu().detach().numpy()), text_out
|
357 |
-
else:
|
358 |
-
return None, text_out
|
359 |
|
360 |
|
361 |
def process_s2st_example(
|
362 |
input_audio_file: str, target_language: str
|
363 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
364 |
-
return
|
365 |
task_name="S2ST",
|
366 |
audio_source="file",
|
367 |
input_audio_mic=None,
|
@@ -375,7 +346,7 @@ def process_s2st_example(
|
|
375 |
def process_s2tt_example(
|
376 |
input_audio_file: str, target_language: str
|
377 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
378 |
-
return
|
379 |
task_name="S2TT",
|
380 |
audio_source="file",
|
381 |
input_audio_mic=None,
|
@@ -389,7 +360,7 @@ def process_s2tt_example(
|
|
389 |
def process_t2st_example(
|
390 |
input_text: str, source_language: str, target_language: str
|
391 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
392 |
-
return
|
393 |
task_name="T2ST",
|
394 |
audio_source="",
|
395 |
input_audio_mic=None,
|
@@ -403,7 +374,7 @@ def process_t2st_example(
|
|
403 |
def process_t2tt_example(
|
404 |
input_text: str, source_language: str, target_language: str
|
405 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
406 |
-
return
|
407 |
task_name="T2TT",
|
408 |
audio_source="",
|
409 |
input_audio_mic=None,
|
@@ -417,7 +388,7 @@ def process_t2tt_example(
|
|
417 |
def process_asr_example(
|
418 |
input_audio_file: str, target_language: str
|
419 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
420 |
-
return
|
421 |
task_name="ASR",
|
422 |
audio_source="file",
|
423 |
input_audio_mic=None,
|
@@ -705,7 +676,7 @@ with gr.Blocks(css=css) as demo:
|
|
705 |
)
|
706 |
|
707 |
btn.click(
|
708 |
-
fn=
|
709 |
inputs=[
|
710 |
task_name,
|
711 |
audio_source,
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import numpy as np
|
11 |
+
# import torch
|
12 |
+
|
13 |
+
|
14 |
+
from gradio_client import Client
|
15 |
+
|
16 |
+
client = Client("https://facebook-seamless-m4t.hf.space/")
|
17 |
|
18 |
DESCRIPTION = """
|
19 |
|
|
|
292 |
|
293 |
# Download sample input audio files
|
294 |
filenames = ["assets/sample_input.mp3", "assets/sample_input_2.mp3"]
|
295 |
+
# for filename in filenames:
|
296 |
+
# hf_hub_download(
|
297 |
+
# repo_id="facebook/seamless_m4t",
|
298 |
+
# repo_type="space",
|
299 |
+
# filename=filename,
|
300 |
+
# local_dir=".",
|
301 |
+
# )
|
302 |
|
303 |
AUDIO_SAMPLE_RATE = 16000.0
|
304 |
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
305 |
DEFAULT_TARGET_LANGUAGE = "French"
|
306 |
|
307 |
+
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
+
def api_predict(
|
|
|
310 |
task_name: str,
|
311 |
audio_source: str,
|
312 |
input_audio_mic: str | None,
|
313 |
input_audio_file: str | None,
|
314 |
input_text: str | None,
|
315 |
source_language: str | None,
|
316 |
+
target_language: str,):
|
317 |
+
|
318 |
+
audio_out, text_out = client.predict(task_name,
|
319 |
+
audio_source,
|
320 |
+
input_audio_mic,
|
321 |
+
input_audio_file,
|
322 |
+
input_text,
|
323 |
+
source_language,
|
324 |
+
target_language,
|
325 |
+
api_name="/run")
|
326 |
+
return audio_out, text_out
|
327 |
+
|
328 |
|
|
|
|
|
|
|
|
|
|
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
|
331 |
|
332 |
def process_s2st_example(
|
333 |
input_audio_file: str, target_language: str
|
334 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
335 |
+
return api_predict(
|
336 |
task_name="S2ST",
|
337 |
audio_source="file",
|
338 |
input_audio_mic=None,
|
|
|
346 |
def process_s2tt_example(
|
347 |
input_audio_file: str, target_language: str
|
348 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
349 |
+
return api_predict(
|
350 |
task_name="S2TT",
|
351 |
audio_source="file",
|
352 |
input_audio_mic=None,
|
|
|
360 |
def process_t2st_example(
|
361 |
input_text: str, source_language: str, target_language: str
|
362 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
363 |
+
return api_predict(
|
364 |
task_name="T2ST",
|
365 |
audio_source="",
|
366 |
input_audio_mic=None,
|
|
|
374 |
def process_t2tt_example(
|
375 |
input_text: str, source_language: str, target_language: str
|
376 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
377 |
+
return api_predict(
|
378 |
task_name="T2TT",
|
379 |
audio_source="",
|
380 |
input_audio_mic=None,
|
|
|
388 |
def process_asr_example(
|
389 |
input_audio_file: str, target_language: str
|
390 |
) -> tuple[tuple[int, np.ndarray] | None, str]:
|
391 |
+
return api_predict(
|
392 |
task_name="ASR",
|
393 |
audio_source="file",
|
394 |
input_audio_mic=None,
|
|
|
676 |
)
|
677 |
|
678 |
btn.click(
|
679 |
+
fn=api_predict,
|
680 |
inputs=[
|
681 |
task_name,
|
682 |
audio_source,
|