Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,8 +12,6 @@ from langchain import HuggingFaceHub, LLMChain, PromptTemplate
|
|
12 |
from langchain.memory import ConversationBufferWindowMemory
|
13 |
from langchain.chains import ConversationalRetrievalChain
|
14 |
|
15 |
-
os.environ["OPENAI_API_KEY"] ='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'
|
16 |
-
|
17 |
trait_content_df=pd.read_csv('AI Personality Chart trait_content.csv')
|
18 |
trait_content_df=trait_content_df.drop(0,axis=0)
|
19 |
trait_content_df.rename(columns={'Column 1':'Question','Column 2':'Options','Column 3':'Traits','Column 4':'Content'},inplace=True)
|
@@ -21,7 +19,7 @@ trait_content_df['Title'].fillna(method='ffill',inplace=True)
|
|
21 |
trait_content_df['Question'].fillna(method='ffill',inplace=True)
|
22 |
|
23 |
template = """
|
24 |
-
|
25 |
{history}
|
26 |
Me:{human_input}
|
27 |
Jack:
|
@@ -65,12 +63,6 @@ trait_content_df_org=pd.read_csv('AI Personality Chart trait_content.csv')
|
|
65 |
trait_content_df_org=trait_content_df_org.drop(0,axis=0)
|
66 |
trait_content_df_org.rename(columns={'Column 1':'Question','Column 2':'Options','Column 3':'Traits','Column 4':'Content'},inplace=True)
|
67 |
|
68 |
-
# Import the second CSV file
|
69 |
-
traits_description_df = pd.read_csv('Traits Description - Sheet1.csv')
|
70 |
-
|
71 |
-
# Extract unique values from the "Traits" column of trait_content_df_org
|
72 |
-
unique_traits = trait_content_df_org['Traits'].unique()
|
73 |
-
|
74 |
|
75 |
def ui():
|
76 |
# Initialize a dictionary to store responses
|
@@ -105,11 +97,11 @@ def ui():
|
|
105 |
st.write(question)
|
106 |
st.write(selected_option)
|
107 |
|
108 |
-
#
|
109 |
selected_traits = [responses[question] for question in responses]
|
110 |
options_list = []
|
111 |
traits_list = []
|
112 |
-
|
113 |
|
114 |
for trait_str in selected_traits:
|
115 |
matching_rows = trait_content_df_org[trait_content_df_org["Options"] == trait_str]
|
@@ -117,24 +109,25 @@ def ui():
|
|
117 |
if not matching_rows.empty:
|
118 |
options_list.append(matching_rows["Options"].values[0])
|
119 |
traits_list.append(matching_rows["Traits"].values[0])
|
|
|
120 |
|
121 |
-
|
122 |
-
unique_traits = list(set(traits_list))
|
123 |
-
|
124 |
-
# Create a content list as a formatted string
|
125 |
-
formatted_content_list = ",".join([f"'{trait.lower()}'" for trait in unique_traits])
|
126 |
|
127 |
# Display user input field
|
128 |
name_input = st.text_input("Enter your name:")
|
129 |
|
130 |
# Add a submit button
|
131 |
if st.button("Submit"):
|
132 |
-
# Generate a chatbot response
|
133 |
-
prompt = f"The following are Traits {formatted_content_list}"
|
134 |
bio = conversational_chat(prompt, name_input)
|
135 |
st.write(bio)
|
136 |
|
137 |
|
138 |
|
|
|
|
|
|
|
|
|
139 |
if __name__=='__main__':
|
140 |
ui()
|
|
|
|
12 |
from langchain.memory import ConversationBufferWindowMemory
|
13 |
from langchain.chains import ConversationalRetrievalChain
|
14 |
|
|
|
|
|
15 |
trait_content_df=pd.read_csv('AI Personality Chart trait_content.csv')
|
16 |
trait_content_df=trait_content_df.drop(0,axis=0)
|
17 |
trait_content_df.rename(columns={'Column 1':'Question','Column 2':'Options','Column 3':'Traits','Column 4':'Content'},inplace=True)
|
|
|
19 |
trait_content_df['Question'].fillna(method='ffill',inplace=True)
|
20 |
|
21 |
template = """
|
22 |
+
Imagine you are a person that is looking for making a cool dating app bio. Craft distinctive responses for each user based on traits extracted and refer from the content provided for each trait, even if the prompts are similar.Make a single Bio for all traits at once, no need to make different for each trait. Respond it in 2nd person view. Avoid using the same sentences for different users while keeping the response within 100 words.
|
23 |
{history}
|
24 |
Me:{human_input}
|
25 |
Jack:
|
|
|
63 |
trait_content_df_org=trait_content_df_org.drop(0,axis=0)
|
64 |
trait_content_df_org.rename(columns={'Column 1':'Question','Column 2':'Options','Column 3':'Traits','Column 4':'Content'},inplace=True)
|
65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
def ui():
|
68 |
# Initialize a dictionary to store responses
|
|
|
97 |
st.write(question)
|
98 |
st.write(selected_option)
|
99 |
|
100 |
+
# Generate a prompt based on selected options
|
101 |
selected_traits = [responses[question] for question in responses]
|
102 |
options_list = []
|
103 |
traits_list = []
|
104 |
+
content_list = []
|
105 |
|
106 |
for trait_str in selected_traits:
|
107 |
matching_rows = trait_content_df_org[trait_content_df_org["Options"] == trait_str]
|
|
|
109 |
if not matching_rows.empty:
|
110 |
options_list.append(matching_rows["Options"].values[0])
|
111 |
traits_list.append(matching_rows["Traits"].values[0])
|
112 |
+
content_list.append(matching_rows["Content"].values[0])
|
113 |
|
114 |
+
prompt = f"The following are Traits {', '.join(traits_list)}, and the content for the options is {', '.join(content_list)}"
|
|
|
|
|
|
|
|
|
115 |
|
116 |
# Display user input field
|
117 |
name_input = st.text_input("Enter your name:")
|
118 |
|
119 |
# Add a submit button
|
120 |
if st.button("Submit"):
|
121 |
+
# Generate a chatbot response
|
|
|
122 |
bio = conversational_chat(prompt, name_input)
|
123 |
st.write(bio)
|
124 |
|
125 |
|
126 |
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
if __name__=='__main__':
|
132 |
ui()
|
133 |
+
|