File size: 2,346 Bytes
0225049
 
 
 
 
 
dd61d2c
655168b
0225049
 
 
 
 
 
 
 
 
 
 
cbbcfd4
0225049
 
 
 
cbbcfd4
0225049
 
 
 
 
 
 
 
 
 
 
 
655168b
0225049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
655168b
 
 
 
 
0225049
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch 
import clip
import PIL.Image
import skimage.io as io
import streamlit as st
from transformers import GPT2Tokenizer, GPT2LMHeadModel, AdamW, get_linear_schedule_with_warmup
from model import generate2,ClipCaptionModel
from engine import inference

#model loading code 

device =  "cpu"
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

prefix_length = 10

model = ClipCaptionModel(prefix_length)

model.load_state_dict(torch.load('model.h5',map_location=torch.device('cpu'))) 

model = model.eval() 

coco_model = ClipCaptionModel(prefix_length)
coco_model.load_state_dict(torch.load('COCO_model.h5',map_location=torch.device('cpu')))
model = model.eval()  


def ui():
    st.markdown("# Image Captioning")
    uploaded_file = st.file_uploader("Upload an Image", type=['png', 'jpeg', 'jpg'])

    if uploaded_file is not None:
        image = io.imread(uploaded_file)
        pil_image = PIL.Image.fromarray(image)
        image = preprocess(pil_image).unsqueeze(0).to(device)

        option = st.selectbox('Please select the Model',('Model', 'COCO Model','PreTrained Model'))

        if option=='Model':
            with torch.no_grad():
                prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
                prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
            generated_text_prefix = generate2(model, tokenizer, embed=prefix_embed)

            st.image(uploaded_file, width = 500, channels = 'RGB')
            st.markdown("**PREDICTION:** " + generated_text_prefix)
        
        elif option=='COCO Model':
            with torch.no_grad():
                prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
                prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
            generated_text_prefix = generate2(coco_model, tokenizer, embed=prefix_embed)

            st.image(uploaded_file, width = 500, channels = 'RGB')
            st.markdown("**PREDICTION:** " + generated_text_prefix)

        elif option=='PreTrained Model': 
            out = inference(uploaded_file)
            st.image(uploaded_file, width = 500, channels = 'RGB')
            st.markdown("**PREDICTION:** " + out)


if __name__ == '__main__':
    ui()