clip_gpt2 / neuralnet /model.py
Vageesh1's picture
Update neuralnet/model.py
d21ae3c
import torch
import torch.nn as nn
import torchvision.models as models
class InceptionEncoder(nn.Module):
def __init__(self, embed_size, train_CNN=False):
super(InceptionEncoder, self).__init__()
self.train_CNN = train_CNN
self.inception = models.inception_v3(pretrained=True, aux_logits=False)
self.inception.fc = nn.Linear(self.inception.fc.in_features, embed_size)
self.relu = nn.ReLU()
self.bn = nn.BatchNorm1d(embed_size, momentum = 0.01)
self.dropout = nn.Dropout(0.5)
def forward(self, images):
features = self.inception(images)
norm_features = self.bn(features)
return self.dropout(self.relu(norm_features))
class LstmDecoder(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers, device = 'cpu'):
super(LstmDecoder, self).__init__()
self.num_layers = num_layers
self.hidden_size = hidden_size
self.device = device
self.embed = nn.Embedding(vocab_size, embed_size)
self.lstm = nn.LSTM(embed_size, hidden_size, num_layers = self.num_layers)
self.linear = nn.Linear(hidden_size, vocab_size)
self.dropout = nn.Dropout(0.5)
def forward(self, encoder_out, captions):
h0 = torch.zeros(self.num_layers, encoder_out.shape[0], self.hidden_size).to(self.device).requires_grad_()
c0 = torch.zeros(self.num_layers, encoder_out.shape[0], self.hidden_size).to(self.device).requires_grad_()
embeddings = self.dropout(self.embed(captions))
embeddings = torch.cat((encoder_out.unsqueeze(0), embeddings), dim=0)
hiddens, (hn, cn) = self.lstm(embeddings, (h0.detach(), c0.detach()))
outputs = self.linear(hiddens)
return outputs
class SeqToSeq(nn.Module):
def __init__(self, embed_size, hidden_size, vocab_size, num_layers, device = 'cpu'):
super(SeqToSeq, self).__init__()
self.encoder = InceptionEncoder(embed_size)
self.decoder = LstmDecoder(embed_size, hidden_size, vocab_size, num_layers, device)
def forward(self, images, captions):
features = self.encoder(images)
outputs = self.decoder(features, captions)
return outputs
def caption_image(self, image, vocabulary, max_length = 50):
result_caption = []
with torch.no_grad():
x = self.encoder(image).unsqueeze(0)
states = None
for _ in range(max_length):
hiddens, states = self.decoder.lstm(x, states)
output = self.decoder.linear(hiddens.squeeze(0))
predicted = output.argmax(1)
result_caption.append(predicted.item())
x = self.decoder.embed(predicted).unsqueeze(0)
if vocabulary[str(predicted.item())] == "<EOS>":
break
return [vocabulary[str(idx)] for idx in result_caption]