Spaces:
Running
Running
Update app.py (#1)
Browse files- Update app.py (2c18242cade832c0294d96d9a62aabb7a09e96f9)
Co-authored-by: Rushil shah <[email protected]>
app.py
CHANGED
@@ -10,8 +10,8 @@ from model import generate2,ClipCaptionModel
|
|
10 |
from engine import inference
|
11 |
|
12 |
|
13 |
-
model_trained = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
14 |
-
model_trained.load_state_dict(torch.load('model_trained.pth',map_location=torch.device('cpu')))
|
15 |
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
16 |
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
17 |
|
@@ -72,10 +72,10 @@ def ui():
|
|
72 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
73 |
st.markdown("**PREDICTION:** " + out)
|
74 |
|
75 |
-
elif option=='VIT+GPT2':
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
|
81 |
|
|
|
10 |
from engine import inference
|
11 |
|
12 |
|
13 |
+
# model_trained = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
14 |
+
# model_trained.load_state_dict(torch.load('model_trained.pth',map_location=torch.device('cpu')))
|
15 |
image_processor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
16 |
tokenizer = GPT2TokenizerFast.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
|
17 |
|
|
|
72 |
st.image(uploaded_file, width = 500, channels = 'RGB')
|
73 |
st.markdown("**PREDICTION:** " + out)
|
74 |
|
75 |
+
# elif option=='VIT+GPT2':
|
76 |
+
# out=show_n_generate(uploaded_file, greedy = False, model = model_trained)
|
77 |
+
# st.image(uploaded_file, width = 500, channels = 'RGB')
|
78 |
+
# st.markdown("**PREDICTION:** " + out)
|
79 |
|
80 |
|
81 |
|