import torch import torch.nn as nn import torchvision.models as models class InceptionEncoder(nn.Module): def __init__(self, embed_size, train_CNN=False): super(InceptionEncoder, self).__init__() self.train_CNN = train_CNN self.inception = models.inception_v3(pretrained=True, aux_logits=False) self.inception.fc = nn.Linear(self.inception.fc.in_features, embed_size) self.relu = nn.ReLU() self.bn = nn.BatchNorm1d(embed_size, momentum = 0.01) self.dropout = nn.Dropout(0.5) def forward(self, images): features = self.inception(images) norm_features = self.bn(features) return self.dropout(self.relu(norm_features)) class LstmDecoder(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers, device = 'cpu'): super(LstmDecoder, self).__init__() self.num_layers = num_layers self.hidden_size = hidden_size self.device = device self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers = self.num_layers) self.linear = nn.Linear(hidden_size, vocab_size) self.dropout = nn.Dropout(0.5) def forward(self, encoder_out, captions): h0 = torch.zeros(self.num_layers, encoder_out.shape[0], self.hidden_size).to(self.device).requires_grad_() c0 = torch.zeros(self.num_layers, encoder_out.shape[0], self.hidden_size).to(self.device).requires_grad_() embeddings = self.dropout(self.embed(captions)) embeddings = torch.cat((encoder_out.unsqueeze(0), embeddings), dim=0) hiddens, (hn, cn) = self.lstm(embeddings, (h0.detach(), c0.detach())) outputs = self.linear(hiddens) return outputs class SeqToSeq(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers, device = 'cpu'): super(SeqToSeq, self).__init__() self.encoder = InceptionEncoder(embed_size) self.decoder = LstmDecoder(embed_size, hidden_size, vocab_size, num_layers, device) def forward(self, images, captions): features = self.encoder(images) outputs = self.decoder(features, captions) return outputs def caption_image(self, image, vocabulary, max_length = 50): result_caption = [] with torch.no_grad(): x = self.encoder(image).unsqueeze(0) states = None for _ in range(max_length): hiddens, states = self.decoder.lstm(x, states) output = self.decoder.linear(hiddens.squeeze(0)) predicted = output.argmax(1) result_caption.append(predicted.item()) x = self.decoder.embed(predicted).unsqueeze(0) if vocabulary[str(predicted.item())] == "": break return [vocabulary[str(idx)] for idx in result_caption]