File size: 9,326 Bytes
c5e85a4
 
 
 
 
 
 
 
 
 
 
 
 
 
276cc19
c5e85a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276cc19
0c75c4a
276cc19
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from pathlib import Path
import os
import numpy as np
import cv2
from Wav2Lip import audio
import subprocess
from tqdm import tqdm
from Wav2Lip import face_detection
from Wav2Lip.models import Wav2Lip
import platform
# import tensorflow as tf
import torch
# import face_alignment
# import streamlit as st
import ffmpeg

# checkpoint_path = 'wav2lip_model/wav2lip_gan.tflite'
checkpoint_path = 'wav2lip_model/wav2lip_gan.pth'
outfile = 'generated_video.mp4'
static = False
fps = 25.
pads = [0, 10, 0, 0]
face_det_batch_size = 16
wav2lip_batch_size = 128
resize_factor = 1
crop = [0, -1, 0, -1]
box = [-1, -1, -1, -1]
rotate = False
nosmooth = False
img_size = 96
device = 'cpu'
mel_step_size = 16

def _load(checkpoint_path):
	if device == 'cuda':
		checkpoint = torch.load(checkpoint_path)
	else:
		checkpoint = torch.load(checkpoint_path,
								map_location=lambda storage, loc: storage)
	return checkpoint

def load_model(path):
	model = Wav2Lip()
	print("Load checkpoint from: {}".format(path))
	checkpoint = _load(path)
	s = checkpoint["state_dict"]
	new_s = {}
	for k, v in s.items():
		new_s[k.replace('module.', '')] = v
	model.load_state_dict(new_s)

	model = model.to(device)
	return model.eval()
	
def get_smoothened_boxes(boxes, T):
	for i in range(len(boxes)):
		if i + T > len(boxes):
			window = boxes[len(boxes) - T:]
		else:
			window = boxes[i : i + T]
		boxes[i] = np.mean(window, axis=0)
	return boxes

def face_detect(images):
    detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, 
    										flip_input=False, device=device)

    # detector = face_detection.build_detector("DSFDDetector", confidence_threshold=.5, nms_iou_threshold=.3)
    # detector = face_alignment.FaceAlignment(face_alignment.LandmarksType.TWO_D, flip_input=False, device=device)


    batch_size = face_det_batch_size

    while 1:
        predictions = []
        try:
            for i in tqdm(range(0, len(images), batch_size)):
                predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))
                # predictions.extend(detector.batched_detect(np.array(images[i:i + batch_size])))
                # predictions.extend(detector.get_landmarks_from_batch(np.array(images[i:i + batch_size])))
        except RuntimeError:
            if batch_size == 1: 
                raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')
            batch_size //= 2
            print('Recovering from OOM error; New batch size: {}'.format(batch_size))
            continue
        break

    results = []
    pady1, pady2, padx1, padx2 = pads
    for rect, image in zip(predictions, images):
        if rect is None:
            cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.
            raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')

        y1 = max(0, rect[1] - pady1)
        y2 = min(image.shape[0], rect[3] + pady2)
        x1 = max(0, rect[0] - padx1)
        x2 = min(image.shape[1], rect[2] + padx2)
        
        results.append([x1, y1, x2, y2])

    boxes = np.array(results)
    if not nosmooth: boxes = get_smoothened_boxes(boxes, T=5)
    results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]

    del detector
    return results 

def datagen(frames, mels):
	img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	if box[0] == -1:
		if not static:
			face_det_results = face_detect(frames) # BGR2RGB for CNN face detection
		else:
			face_det_results = face_detect([frames[0]])
	else:
		print('Using the specified bounding box instead of face detection...')
		y1, y2, x1, x2 = box
		face_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]

	for i, m in enumerate(mels):
		idx = 0 if static else i%len(frames)
		frame_to_save = frames[idx].copy()
		face, coords = face_det_results[idx].copy()

		face = cv2.resize(face, (img_size, img_size))
			
		img_batch.append(face)
		mel_batch.append(m)
		frame_batch.append(frame_to_save)
		coords_batch.append(coords)

		if len(img_batch) >= wav2lip_batch_size:
			img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

			img_masked = img_batch.copy()
			img_masked[:, img_size//2:] = 0

			img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
			mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

			yield img_batch, mel_batch, frame_batch, coords_batch
			img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []

	if len(img_batch) > 0:
		img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)

		img_masked = img_batch.copy()
		img_masked[:, img_size//2:] = 0

		img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.
		mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])

		yield img_batch, mel_batch, frame_batch, coords_batch
		
def get_full_frames(face, fps=fps):
		
    if not os.path.isfile(face):
        
        raise ValueError('face argument must be a valid path to video/image file')

    elif face.split('.')[1] in ['jpg', 'png', 'jpeg']:
        
        full_frames = [cv2.imread(face)]
        fps = fps

    else:
        
        video_stream = cv2.VideoCapture(face)
        fps = video_stream.get(cv2.CAP_PROP_FPS)

        print('Reading video frames...')

        full_frames = []
        while 1:
            still_reading, frame = video_stream.read()
            if not still_reading:
                video_stream.release()
                break
            if resize_factor > 1:
                frame = cv2.resize(frame, (frame.shape[1]//resize_factor, frame.shape[0]//resize_factor))

            if rotate:
                frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)

            y1, y2, x1, x2 = crop
            if x2 == -1: x2 = frame.shape[1]
            if y2 == -1: y2 = frame.shape[0]

            frame = frame[y1:y2, x1:x2]

            full_frames.append(frame)

    print ("Number of frames available for inference: "+str(len(full_frames)))

    return full_frames

def get_mel_chunks(voice_audio):
	
    if not voice_audio.endswith('.wav'):
        print('Extracting raw audio...')
        # st.write(voice_audio)
        command = 'ffmpeg -y -i {} -strict -2 {}'.format(voice_audio, 'temp/temp.wav')
        subprocess.call(command, shell=True)
        voice_audio = 'temp/temp.wav'
        
    wav = audio.load_wav(voice_audio, 16000)
    mel = audio.melspectrogram(wav)
    print(mel.shape)

    if np.isnan(mel.reshape(-1)).sum() > 0:
        raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')

    mel_chunks = []
    mel_idx_multiplier = 80./fps 
    i = 0
    while 1:
        start_idx = int(i * mel_idx_multiplier)
        if start_idx + mel_step_size > len(mel[0]):
            mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])
            break
        mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
        i += 1

    print("Length of mel chunks: {}".format(len(mel_chunks)))

    return mel_chunks
	
def create_video(voice_audio, face):
	
    global static

    mel_chunks = get_mel_chunks(voice_audio)
    full_frames = get_full_frames(face)
    full_frames = full_frames[:len(mel_chunks)]

    batch_size = wav2lip_batch_size

    if face and face.split('.')[1] in ['jpg', 'png', 'jpeg']:
        static = True

    gen = datagen(full_frames.copy(), mel_chunks)

    for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, 
                                        total=int(np.ceil(float(len(mel_chunks))/batch_size)))):
        if i == 0:
            model = load_model(checkpoint_path)
            print ("Model loaded")

            frame_h, frame_w = full_frames[0].shape[:-1]
            out = cv2.VideoWriter('temp/result.avi', 
                                    cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))

        img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)
        mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)

        with torch.no_grad():
            pred = model(mel_batch, img_batch)

        pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.
        
        for p, f, c in zip(pred, frames, coords):
            y1, y2, x1, x2 = c
            p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))

            f[y1:y2, x1:x2] = p
            out.write(f)
            
    out.release()

    # command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(voice_audio, 'temp/result.avi', outfile)
    # subprocess.call(command, shell=platform.system() != 'Windows')
    # subprocess.call(command, shell=False)

    # Replace args.audio and args.outfile with the actual variables or arguments
    audio_input = voice_audio
    video_input = 'temp/result.avi'
    output_file = outfile

    # Construct the ffmpeg command using ffmpeg-python
    audio_stream = ffmpeg.input(audio_input)
    video_stream = ffmpeg.input(video_input)
    ffmpeg.concat(video_stream, audio_stream, v=1, a=1).output(output_file, strict='-2', qscale=1).run(overwrite_output=True)