import os import gc import torchaudio import pandas from faster_whisper import WhisperModel from glob import glob from tqdm import tqdm import torch import torchaudio # torch.set_num_threads(1) from TTS.tts.layers.xtts.tokenizer import multilingual_cleaners torch.set_num_threads(16) import os audio_types = (".wav", ".mp3", ".flac") def list_audios(basePath, contains=None): # return the set of files that are valid return list_files(basePath, validExts=audio_types, contains=contains) def list_files(basePath, validExts=None, contains=None): # loop over the directory structure for (rootDir, dirNames, filenames) in os.walk(basePath): # loop over the filenames in the current directory for filename in filenames: # if the contains string is not none and the filename does not contain # the supplied string, then ignore the file if contains is not None and filename.find(contains) == -1: continue # determine the file extension of the current file ext = filename[filename.rfind("."):].lower() # check to see if the file is an audio and should be processed if validExts is None or ext.endswith(validExts): # construct the path to the audio and yield it audioPath = os.path.join(rootDir, filename) yield audioPath def format_audio_list(audio_files, target_language="en", out_path=None, buffer=0.2, eval_percentage=0.15, speaker_name="coqui", gradio_progress=None): audio_total_size = 0 # make sure that ooutput file exists os.makedirs(out_path, exist_ok=True) # Loading Whisper device = "cuda" if torch.cuda.is_available() else "cpu" print("Loading Whisper Model!") asr_model = WhisperModel("large-v2", device=device, compute_type="float16") metadata = {"audio_file": [], "text": [], "speaker_name": []} if gradio_progress is not None: tqdm_object = gradio_progress.tqdm(audio_files, desc="Formatting...") else: tqdm_object = tqdm(audio_files) for audio_path in tqdm_object: wav, sr = torchaudio.load(audio_path) # stereo to mono if needed if wav.size(0) != 1: wav = torch.mean(wav, dim=0, keepdim=True) wav = wav.squeeze() audio_total_size += (wav.size(-1) / sr) segments, _ = asr_model.transcribe(audio_path, word_timestamps=True, language=target_language) segments = list(segments) i = 0 sentence = "" sentence_start = None first_word = True # added all segments words in a unique list words_list = [] for _, segment in enumerate(segments): words = list(segment.words) words_list.extend(words) # process each word for word_idx, word in enumerate(words_list): if first_word: sentence_start = word.start # If it is the first sentence, add buffer or get the begining of the file if word_idx == 0: sentence_start = max(sentence_start - buffer, 0) # Add buffer to the sentence start else: # get previous sentence end previous_word_end = words_list[word_idx - 1].end # add buffer or get the silence midle between the previous sentence and the current one sentence_start = max(sentence_start - buffer, (previous_word_end + sentence_start)/2) sentence = word.word first_word = False else: sentence += word.word if word.word[-1] in ["!", ".", "?"]: sentence = sentence[1:] # Expand number and abbreviations plus normalization sentence = multilingual_cleaners(sentence, target_language) audio_file_name, _ = os.path.splitext(os.path.basename(audio_path)) audio_file = f"wavs/{audio_file_name}_{str(i).zfill(8)}.wav" # Check for the next word's existence if word_idx + 1 < len(words_list): next_word_start = words_list[word_idx + 1].start else: # If don't have more words it means that it is the last sentence then use the audio len as next word start next_word_start = (wav.shape[0] - 1) / sr # Average the current word end and next word start word_end = min((word.end + next_word_start) / 2, word.end + buffer) absoulte_path = os.path.join(out_path, audio_file) os.makedirs(os.path.dirname(absoulte_path), exist_ok=True) i += 1 first_word = True audio = wav[int(sr*sentence_start):int(sr*word_end)].unsqueeze(0) # if the audio is too short ignore it (i.e < 0.33 seconds) if audio.size(-1) >= sr/3: torchaudio.save(absoulte_path, audio, sr ) else: continue metadata["audio_file"].append(audio_file) metadata["text"].append(sentence) metadata["speaker_name"].append(speaker_name) df = pandas.DataFrame(metadata) df = df.sample(frac=1) num_val_samples = int(len(df)*eval_percentage) df_eval = df[:num_val_samples] df_train = df[num_val_samples:] df_train = df_train.sort_values('audio_file') train_metadata_path = os.path.join(out_path, "metadata_train.csv") df_train.to_csv(train_metadata_path, sep="|", index=False) eval_metadata_path = os.path.join(out_path, "metadata_eval.csv") df_eval = df_eval.sort_values('audio_file') df_eval.to_csv(eval_metadata_path, sep="|", index=False) # deallocate VRAM and RAM del asr_model, df_train, df_eval, df, metadata gc.collect() return train_metadata_path, eval_metadata_path, audio_total_size