Spaces:
Sleeping
Sleeping
File size: 10,444 Bytes
30d7a06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import streamlit as st
import pandas as pd
import numpy as np
import os
import sys
from company_bankruptcy.components.model_trainer import ModelTrainer
from company_bankruptcy.components.data_transformation import DataTransformation
from company_bankruptcy.utils.utils import load_object
from company_bankruptcy.logger.logger import logging
from company_bankruptcy.exception.exception import CustomException
def get_prob(input_df, trained_models_dict, feature_selection_dict, opt_dict):
if best_model_name == 'Average Ensemble':
default_prob = 0
for model_name in trained_models_dict:
if model_name == 'best_model_name':
continue
temp_features_list = feature_selection_dict[model_name][1]['selected_shap_feats']
temp_prob = trained_models_dict[model_name].predict_proba(input_df[temp_features_list])[:, 1]
default_prob += temp_prob
default_prob /= (len(trained_models_dict) - 1)
elif best_model_name == 'Optimized Ensemble':
rfm_features_list = feature_selection_dict['RandomForestClassifier'][1]['selected_shap_feats']
xgbm_features_list = feature_selection_dict['XGBClassifier'][1]['selected_shap_feats']
lrm_features_list = feature_selection_dict['LogisticRegression'][1]['selected_shap_feats']
svcm_features_list = feature_selection_dict['SVC'][1]['selected_shap_feats']
preds_list = []
for idx in opt_dict:
opt = opt_dict[idx]['opt']
rfm = opt_dict[idx]['rfm']
xgbm = opt_dict[idx]['xgbm']
lrm = opt_dict[idx]['lrm']
svcm = opt_dict[idx]['svcm']
rfm_probs = rfm.predict_proba(input_df[rfm_features_list])[:, 1]
xgbm_probs = xgbm.predict_proba(input_df[xgbm_features_list])[:, 1]
lrm_probs = lrm.predict_proba(input_df[lrm_features_list])[:, 1]
svcm_probs = svcm.predict_proba(input_df[svcm_features_list])[:, 1]
model_preds = np.column_stack([
rfm_probs,
xgbm_probs,
lrm_probs,
svcm_probs
])
preds_list.append(opt.predict(model_preds))
default_prob = np.mean(np.column_stack(preds_list), axis=1)
elif best_model_name == 'Rank Ensemble':
rank_ensemble_list = []
prob_list = []
model_names_list = []
for model_name in trained_models_dict:
if model_name == 'best_model_name':
continue
temp_features_list = feature_selection_dict[model_name][1]['selected_shap_feats']
model_names_list.append(model_name)
rank_ensemble_list.append((model_name, trained_models_dict[model_name].best_score_))
prob_list.append(trained_models_dict[model_name].predict_proba(input_df[temp_features_list])[:, 1])
rank_ensemble_list = sorted(rank_ensemble_list, key=lambda x: x[1])
default_prob = 0
for i in range(len(rank_ensemble_list)):
default_prob += (i+1) * prob_list[model_names_list.index(rank_ensemble_list[i][0])]
default_prob /= (len(rank_ensemble_list) * (1 + len(rank_ensemble_list)) / 2)
else:
model = trained_models_dict[best_model_name]
temp_features_list = feature_selection_dict[best_model_name][1]['selected_shap_feats']
default_prob = model.predict_proba(input_df[temp_features_list])[:, 1]
return default_prob
st.set_page_config(
page_title='Default Predictor',
layout='centered'
)
try:
st.title('Company Default Predictor')
logging.info('Initiating dictionaries')
if 'trained_models_dict' not in st.session_state:
model_trainer_obj = ModelTrainer()
trained_models_dict = load_object(
os.path.join(
model_trainer_obj.model_trainer_config.trained_models_path,
'trained_models_dict.pkl'
)
)
opt_dict = load_object(
os.path.join(
model_trainer_obj.model_trainer_config.trained_models_path,
'opt_dict.pkl'
)
)
data_transformation_obj = DataTransformation()
feature_selection_dict = load_object(
data_transformation_obj.data_transformation_config.feature_selection_dict_file_path
)
example_data = pd.read_excel('app_input_example.xlsx')
# example_data = pd.read_csv('app_input_example.csv')
st.session_state['trained_models_dict'] = trained_models_dict
st.session_state['opt_dict'] = opt_dict
st.session_state['feature_selection_dict'] = feature_selection_dict
st.session_state['example_data'] = example_data
else:
trained_models_dict = st.session_state['trained_models_dict']
opt_dict = st.session_state['opt_dict']
feature_selection_dict = st.session_state['feature_selection_dict']
example_data = st.session_state['example_data']
logging.info('Dictionaries initiated')
logging.info('Checking button clicked')
if 'clicked' not in st.session_state:
st.session_state.clicked = False
logging.info(f'Button check passed with value {st.session_state.clicked}')
st.subheader('Please, fill in the input boxes or provide an csv/excel file and click on submit button to get the default probability(ies).')
best_model_name = trained_models_dict['best_model_name']
logging.info("Getting features' list")
if best_model_name in ['Average Ensemble', 'Optimized Ensemble', 'Rank Ensemble']:
features_list = []
for model_name in feature_selection_dict:
features_list.extend(
feature_selection_dict[model_name][1]['selected_shap_feats']
)
features_list = list(set(features_list))
else:
features_list = feature_selection_dict[best_model_name][1]['selected_shap_feats']
logging.info("Features' list found")
upload_container = st.container()
with upload_container:
upload_col1, upload_col2 = st.columns([0.6, 0.4])
uploaded_file = upload_col1.file_uploader(
'Upload a csv/excel file with data',
type=["csv", "xlsx"]
)
# example_data = pd.read_csv('app_input_example.csv')
# example_data = pd.read_csv('artifacts/data.csv')
# example_data = pd.read_excel('app_input_example.xlsx')
# @st.cache_data
# def convert_df(df):
# return df.to_csv(index=False).encode("utf-8")
# # return df.to_excel(index=False).encode("utf-8")
# csv_data = convert_df(df=example_data[features_list])
csv_data = example_data[features_list].to_csv(index=False).encode("utf-8")
upload_col2.write('An example of the data file')
upload_col2.download_button(
'Download',
data=csv_data,
file_name='input_example.csv',
mime="text/csv"
)
n_cols = 2
n_rows = int((len(features_list) - len(features_list) % n_cols) / n_cols)
if len(features_list) % n_cols != 0:
n_rows += 1
logging.info('Constructing the app input structure')
input_dict = {}
feature_idx = 0
for i in range(n_rows):
temp_input_container = st.container()
with temp_input_container:
col1, col2 = st.columns(n_cols)
if i <= n_rows - 1 and len(features_list) % 2 == 0:
input_dict[features_list[feature_idx]] = [
col1.number_input(
features_list[feature_idx],
format='%.6f' if features_list[feature_idx].split(' ')[-1] != 'Flag' else '%.0f'
)
]
input_dict[features_list[feature_idx+1]] = [
col2.number_input(
features_list[feature_idx+1],
format='%.6f' if features_list[feature_idx+1].split(' ')[-1] != 'Flag' else '%.0f'
)
]
else:
input_dict[features_list[feature_idx]] = [
col1.number_input(
features_list[feature_idx],
format='%.6f' if features_list[feature_idx].split(' ')[-1] != 'Flag' else '%.0f'
)
]
feature_idx += 2
logging.info('Input structure constructed')
def set_button_click():
st.session_state.clicked = True
st.button('Submit', on_click=set_button_click)
if st.session_state.clicked and uploaded_file is None:
st.session_state.clicked = False
logging.info(f'Calculating prob for {best_model_name}')
input_df = pd.DataFrame(input_dict)
default_prob = get_prob(input_df, trained_models_dict, feature_selection_dict, opt_dict)
st.write(f"Default probability: {default_prob[0]:.4f}")
logging.info(f'Default prob: {default_prob[0]:.4f}')
elif st.session_state.clicked and uploaded_file is not None:
st.session_state.clicked = False
# bites_data = uploaded_file.getvalue()
# stringio = StringIO(bites_data.decode('utf-8'))
# string_data = stringio.read()
logging.info('Loading uploaded data')
file_extension = uploaded_file.name.split('.')[-1]
if file_extension == 'csv':
input_df = pd.read_csv(uploaded_file)
else:
input_df = pd.read_excel(uploaded_file)
# input_df = pd.read_excel(uploaded_file)
logging.info('Uploaded data loaded')
with st.spinner('Please wait...'):
logging.info(f'Calculating probabilies for {best_model_name}')
default_prob = get_prob(input_df, trained_models_dict, feature_selection_dict, opt_dict)
logging.info('Probabilities calculated')
result_df = pd.DataFrame()
result_df['default_probability'] = default_prob
result_data = result_df.to_csv(index=False).encode("utf-8")
st.success('Done!')
st.download_button(
'Download the predicted probabilities',
data=result_data,
file_name='default_probabilities.csv',
mime='text/csv'
)
except Exception as e:
logging.info('Error occured while creating streamlit app')
raise CustomException(e, sys)
|