File size: 1,802 Bytes
f1defb2
 
 
6244e10
f1defb2
 
 
 
 
 
 
 
78b83e2
f1defb2
 
 
 
 
 
 
7965073
f1defb2
 
 
 
 
 
 
 
 
 
 
6244e10
3069a0a
f1defb2
 
 
 
6244e10
3069a0a
 
f1defb2
 
 
 
23cfba6
 
f1defb2
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import streamlit as st
import cv2
import numpy as np
from PIL import Image
# import imutils
# import easyocr
# import os
from fastai.vision.all import *
import pathlib
import platform
import os
# import shutil
from fruit_classifier.config.configuration import ConfigurationManager

system_platform = platform.system()
if system_platform == 'Windows': pathlib.PosixPath = pathlib.WindowsPath

config_manager = ConfigurationManager()
config = config_manager.get_training_config()
MODEL_ROOT = config.trained_model_path
MODEL_NAME = config.params_model_name + '.pkl'
MODEL_PATH = os.path.join(MODEL_ROOT, MODEL_NAME)

def main():
    st.title("Fruit Classifier")

    # Use st.camera to capture images from the user's camera
    img_file_buffer = st.camera_input(label='Please, take a photo of a fruit', key='fruit')

    # Check if an image is captured
    if img_file_buffer is not None:
        # Convert the image to a NumPy array
        image = Image.open(img_file_buffer)
        image.save('fruit_image.jpg')
        # image_np = np.array(image)
        # resized_image = cv2.resize(image_np, (640, 640))
        # resized_image = resized_image.astype(np.uint8)
        # resized_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2RGB)
        # image = cv2.imread(img_file_buffer)
        # image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        # cv2.imwrite('fruit_image.jpg', image)

        model = load_learner(MODEL_PATH)
        model_output = model.predict('fruit_image.jpg')

        category_list = [cat for cat in model.dls.vocab]
        prob_idx = category_list.index(model_output[0])
        st.write(f'{model_output[0].title()} is depicted in the photo with {model_output[-1][prob_idx]:.4f} confidence.')

        st.session_state.pop("fruit")

if __name__ == "__main__":
    main()