Changes for Add and remove skills
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ import pandas as pd
|
|
7 |
from datetime import date
|
8 |
import numpy as np
|
9 |
import spacy
|
|
|
10 |
from sentence_transformers import SentenceTransformer, util
|
11 |
from sklearn.feature_extraction.text import CountVectorizer
|
12 |
from sklearn.metrics.pairwise import cosine_similarity
|
@@ -192,7 +193,7 @@ def SkillExtract():
|
|
192 |
conn.commit()
|
193 |
print("Skill Identified : ", skill_name)
|
194 |
#print("Skill inserted in SkillMaster and Inserted in JDSkillDetails")
|
195 |
-
|
196 |
query = "update public.jdmaster set isskillsextracted = 1 where jdmasterid = (%s)"
|
197 |
|
198 |
params = (id_value,)
|
@@ -200,6 +201,106 @@ def SkillExtract():
|
|
200 |
conn.commit()
|
201 |
print("Skills Updated for Skills Extraction for file ", filename_jd)
|
202 |
print("Total Skills : ", len(skills_list))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
def SkillExtraction(file):
|
205 |
annotations = skill_extractor.annotate(file)
|
@@ -322,7 +423,12 @@ def Last20JD():
|
|
322 |
conn = psycopg2.connect(**db_params)
|
323 |
df = pd.read_sql_query(dbQuery, conn)
|
324 |
st.dataframe(df,use_container_width = True, hide_index = True)
|
325 |
-
|
|
|
|
|
|
|
|
|
|
|
326 |
def uploadFile(text,filePath):
|
327 |
hostname = socket.gethostname()
|
328 |
## getting the IP address using socket.gethostbyname() method
|
@@ -341,13 +447,69 @@ def uploadFile(text,filePath):
|
|
341 |
print(ip_address)
|
342 |
print("File Uploaded...")
|
343 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
344 |
def AppFlow(text,fName,query, IsUpload):
|
345 |
profile=""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
if(IsUpload == False and len(query) > 10):
|
347 |
text = query
|
348 |
IsUpload = True
|
349 |
query = ''
|
350 |
-
fName = 'Open Text'
|
|
|
|
|
|
|
|
|
|
|
351 |
with st.spinner('Processing...'):
|
352 |
if(query.upper() == 'SKILLS'):
|
353 |
LatestExtractedSkills()
|
@@ -355,6 +517,9 @@ def AppFlow(text,fName,query, IsUpload):
|
|
355 |
elif(query.upper() == 'JD'):
|
356 |
Last20JD()
|
357 |
st.success('Recently uploaded JDs')
|
|
|
|
|
|
|
358 |
else:
|
359 |
if(IsUpload and query == ''):
|
360 |
uploadFile(str(text),fName)
|
@@ -370,7 +535,26 @@ def AppFlow(text,fName,query, IsUpload):
|
|
370 |
st.write(details[2] + " " + details[3])
|
371 |
|
372 |
st.success('Profile Tagging - ' + profile)
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
def submit (uploaded_resume, query):
|
375 |
text = ""
|
376 |
fName = ""
|
|
|
7 |
from datetime import date
|
8 |
import numpy as np
|
9 |
import spacy
|
10 |
+
import re
|
11 |
from sentence_transformers import SentenceTransformer, util
|
12 |
from sklearn.feature_extraction.text import CountVectorizer
|
13 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
193 |
conn.commit()
|
194 |
print("Skill Identified : ", skill_name)
|
195 |
#print("Skill inserted in SkillMaster and Inserted in JDSkillDetails")
|
196 |
+
extractWords(description_value,id_value)
|
197 |
query = "update public.jdmaster set isskillsextracted = 1 where jdmasterid = (%s)"
|
198 |
|
199 |
params = (id_value,)
|
|
|
201 |
conn.commit()
|
202 |
print("Skills Updated for Skills Extraction for file ", filename_jd)
|
203 |
print("Total Skills : ", len(skills_list))
|
204 |
+
|
205 |
+
def GetSkillId(skillname,jdmasterid):
|
206 |
+
#Fetching skill id from skillmaster
|
207 |
+
conn = psycopg2.connect(**db_params)
|
208 |
+
cursor = conn.cursor()
|
209 |
+
query = "select skillid from skillmaster where upper(skilldetails) = (%s)"
|
210 |
+
params = (skillname.upper(),)
|
211 |
+
cursor.execute(query, params)
|
212 |
+
generated_skill_id = cursor.fetchone()[0]
|
213 |
+
#jdmasterid = 912
|
214 |
+
#print(generated_skill_id)
|
215 |
+
#checking if skill id already in skilldetails
|
216 |
+
query = "SELECT skillid FROM jdSkilldetails WHERE skillid IN (%s) and jdMasterid in (%s)"
|
217 |
+
params = (generated_skill_id,jdmasterid,)
|
218 |
+
cursor.execute(query, params)
|
219 |
+
if cursor.rowcount > 0:
|
220 |
+
#print("Already")
|
221 |
+
query =''
|
222 |
+
else:
|
223 |
+
#print("Updating in DB")
|
224 |
+
insert_query = sql.SQL("""INSERT INTO jdSkilldetails (Skillid, jdMasterid) VALUES (%s, %s)""")
|
225 |
+
cursor.execute(insert_query, (generated_skill_id, jdmasterid))
|
226 |
+
conn.commit()
|
227 |
+
|
228 |
+
cursor.close()
|
229 |
+
# Close the connection
|
230 |
+
conn.close()
|
231 |
+
return generated_skill_id
|
232 |
+
|
233 |
+
def getNewSkills():
|
234 |
+
query = "select skillid,skilldetails,skilltype,skill_score from skillmaster where weightage = -2"
|
235 |
+
conn = psycopg2.connect(**db_params)
|
236 |
+
cursor = conn.cursor()
|
237 |
+
df_skill_master = pd.read_sql_query(query, conn)
|
238 |
+
df_skill_master['skilldetails'] = df_skill_master['skilldetails'].str.upper()
|
239 |
+
cursor.close()
|
240 |
+
# Close the connection
|
241 |
+
conn.close()
|
242 |
+
|
243 |
+
#print(df_skill_master)
|
244 |
+
return df_skill_master
|
245 |
+
def skill_Validate(df, skill):
|
246 |
+
skill = skill.upper()
|
247 |
+
if (len(skill.split()) < 2 and len(skill) < 3) or len(skill.split())==1:
|
248 |
+
df['skill_present'] = df['skilldetails'].apply(lambda x: re.match(rf'^{skill}$', x))
|
249 |
+
if any(df['skill_present']):
|
250 |
+
#print("Valid Skill")
|
251 |
+
return 1
|
252 |
+
else:
|
253 |
+
#print("Not a Skill")
|
254 |
+
return 0
|
255 |
+
elif df['skilldetails'].str.contains(skill.upper()).any():
|
256 |
+
#print("Valid Skill")
|
257 |
+
return 1
|
258 |
+
else:
|
259 |
+
# print("Not a Skill")
|
260 |
+
return 0
|
261 |
+
def extractWords(job_description,JdMasterid):
|
262 |
+
job_roles = []
|
263 |
+
job_description = job_description.replace(')',' ')
|
264 |
+
delimiters = ",", " ", " , ", ";","\n","/","\\"
|
265 |
+
regex_pattern = '|'.join(map(re.escape, delimiters))
|
266 |
+
df = getNewSkills()
|
267 |
+
data = re.split(regex_pattern, job_description)
|
268 |
+
#data = job_description.split(',')
|
269 |
+
for ds in data:
|
270 |
+
#print(ds)
|
271 |
+
try:
|
272 |
+
if(skill_Validate(df,ds.strip())):
|
273 |
+
job_roles.append(ds)
|
274 |
+
GetSkillId(ds.strip(),JdMasterid)
|
275 |
+
print("Skills Identified* : " + ds)
|
276 |
+
except Exception as error:
|
277 |
+
test = 1
|
278 |
+
return job_roles
|
279 |
+
|
280 |
+
def extract_job_role(job_description):
|
281 |
+
# Process the job description text
|
282 |
+
doc = nlp(job_description)
|
283 |
+
df = getNewSkills()
|
284 |
+
# Define keywords related to job roles
|
285 |
+
job_role_keywords = ["role", "responsibilities", "duties", "position", "job title", "experience", "skills", "location", "tecnologies", "soft skills"]
|
286 |
+
#job_role_keywords = ["location"]
|
287 |
+
|
288 |
+
# Initialize an empty list to store extracted job roles
|
289 |
+
job_roles = []
|
290 |
+
|
291 |
+
# Iterate through the sentences in the document
|
292 |
+
for sent in doc.sents:
|
293 |
+
# Check if any of the job role keywords are present in the sentence
|
294 |
+
if any(keyword in sent.text.lower() for keyword in job_role_keywords):
|
295 |
+
# Extract noun phrases that represent job roles
|
296 |
+
for chunk in sent.noun_chunks:
|
297 |
+
print("NLP-" + chunk.text)
|
298 |
+
if(skill_Validate(df,chunk.text)):
|
299 |
+
job_roles.append(chunk.text)
|
300 |
+
print("Skills Identified* : " + chunk.text)
|
301 |
+
|
302 |
+
# Return the extracted job roles
|
303 |
+
return job_roles
|
304 |
|
305 |
def SkillExtraction(file):
|
306 |
annotations = skill_extractor.annotate(file)
|
|
|
423 |
conn = psycopg2.connect(**db_params)
|
424 |
df = pd.read_sql_query(dbQuery, conn)
|
425 |
st.dataframe(df,use_container_width = True, hide_index = True)
|
426 |
+
def Executequery(dbquery):
|
427 |
+
conn = psycopg2.connect(**db_params)
|
428 |
+
cursor_obj = conn.cursor()
|
429 |
+
cursor_obj.execute(dbquery)
|
430 |
+
cursor_obj.close()
|
431 |
+
conn.close()
|
432 |
def uploadFile(text,filePath):
|
433 |
hostname = socket.gethostname()
|
434 |
## getting the IP address using socket.gethostbyname() method
|
|
|
447 |
print(ip_address)
|
448 |
print("File Uploaded...")
|
449 |
|
450 |
+
def RemoveSkills(data):
|
451 |
+
conn = psycopg2.connect(**db_params)
|
452 |
+
cursor = conn.cursor()
|
453 |
+
skill_rm = data.split(':')[1]
|
454 |
+
print("Removing Skills " + skill_rm)
|
455 |
+
query = "update skillmaster set weightage = 0 where skilldetails = (%s)"
|
456 |
+
params = (skill_rm,)
|
457 |
+
cursor.execute(query, params)
|
458 |
+
conn.commit()
|
459 |
+
cursor.close()
|
460 |
+
conn.close()
|
461 |
+
def insert_skill(skills):
|
462 |
+
details = skills.split(',')
|
463 |
+
skill_details = details[0]
|
464 |
+
skill_type = details [1]
|
465 |
+
skill_score1 = details[2]
|
466 |
+
weightage = -2
|
467 |
+
is_active = True
|
468 |
+
conn = psycopg2.connect(**db_params)
|
469 |
+
cursor = conn.cursor()
|
470 |
+
print("Adding Skill " + skill_details)
|
471 |
+
query = "SELECT skillid FROM skillmaster WHERE skillDetails IN (%s)"
|
472 |
+
params = (skill_details,) # Replace 'Test' with your actual variable or user input
|
473 |
+
cursor.execute(query, params)
|
474 |
+
if cursor.rowcount == 0:
|
475 |
+
|
476 |
+
insert_query = sql.SQL("""INSERT INTO SkillMaster (SkillDetails, SkillType, Weightage, IsActive, skill_score)
|
477 |
+
VALUES (%s, %s, %s, %s, %s) RETURNING SkillID""")
|
478 |
+
cursor.execute(insert_query, (skill_details, skill_type, weightage, is_active, skill_score1))
|
479 |
+
conn.commit()
|
480 |
+
else:
|
481 |
+
print("Skill Already in DB")
|
482 |
+
# Close the cursor and connection
|
483 |
+
cursor.close()
|
484 |
+
# Close the connection
|
485 |
+
conn.close()
|
486 |
+
def AddSkills(data):
|
487 |
+
skill_add = data.split(':')[1]
|
488 |
+
insert_skill(skill_add)
|
489 |
def AppFlow(text,fName,query, IsUpload):
|
490 |
profile=""
|
491 |
+
if(len(query) > 8):
|
492 |
+
profile = query[0:7]
|
493 |
+
print(profile)
|
494 |
+
if("@Remove" in profile):
|
495 |
+
|
496 |
+
RemoveSkills(query)
|
497 |
+
st.success('Skills removed')
|
498 |
+
return
|
499 |
+
elif("@Add" in profile):
|
500 |
+
AddSkills(query)
|
501 |
+
st.success('Skills added')
|
502 |
+
return
|
503 |
if(IsUpload == False and len(query) > 10):
|
504 |
text = query
|
505 |
IsUpload = True
|
506 |
query = ''
|
507 |
+
fName = 'Open Text'
|
508 |
+
elif(IsUpload == False and len(query) > 10):
|
509 |
+
text = query
|
510 |
+
IsUpload = True
|
511 |
+
query = ''
|
512 |
+
fName = 'Open Text'
|
513 |
with st.spinner('Processing...'):
|
514 |
if(query.upper() == 'SKILLS'):
|
515 |
LatestExtractedSkills()
|
|
|
517 |
elif(query.upper() == 'JD'):
|
518 |
Last20JD()
|
519 |
st.success('Recently uploaded JDs')
|
520 |
+
elif(query.upper() == 'JD'):
|
521 |
+
Last20JD()
|
522 |
+
st.success('Recently uploaded JDs')
|
523 |
else:
|
524 |
if(IsUpload and query == ''):
|
525 |
uploadFile(str(text),fName)
|
|
|
535 |
st.write(details[2] + " " + details[3])
|
536 |
|
537 |
st.success('Profile Tagging - ' + profile)
|
538 |
+
def extract_Newjob_role(job_description):
|
539 |
+
# Process the job description text
|
540 |
+
doc = nlp(job_description)
|
541 |
+
|
542 |
+
# Define keywords related to job roles
|
543 |
+
job_role_keywords = ["role", "responsibilities", "duties", "position", "job title"]
|
544 |
+
|
545 |
+
# Initialize an empty list to store extracted job roles
|
546 |
+
job_roles = []
|
547 |
+
|
548 |
+
# Iterate through the sentences in the document
|
549 |
+
for sent in doc.sents:
|
550 |
+
# Check if any of the job role keywords are present in the sentence
|
551 |
+
if any(keyword in sent.text.lower() for keyword in job_role_keywords):
|
552 |
+
# Extract noun phrases that represent job roles
|
553 |
+
for chunk in sent.noun_chunks:
|
554 |
+
job_roles.append(chunk.text)
|
555 |
+
|
556 |
+
# Return the extracted job roles
|
557 |
+
return job_roles
|
558 |
def submit (uploaded_resume, query):
|
559 |
text = ""
|
560 |
fName = ""
|