File size: 3,539 Bytes
99bbd64
8683e61
99bbd64
89ac774
8683e61
99bbd64
 
 
 
89509c4
 
99bbd64
7dbf682
9e0b38e
99bbd64
 
 
 
 
9e0b38e
 
 
7dbf682
 
 
 
 
 
6e78f7b
fa24c7d
4aba3cf
bcc36a0
4d13280
bcc36a0
24a440f
4696f89
 
 
 
 
 
 
 
 
 
 
 
 
 
8683e61
 
4696f89
 
fa24c7d
9e0b38e
 
 
fa24c7d
24a440f
 
194b1f0
fa24c7d
6e78f7b
89ac774
 
 
 
 
a587148
 
89509c4
 
 
fa24c7d
 
 
2e32f9d
7b15466
 
71694b0
9597d26
0d1fe0d
7b15466
0d1fe0d
2e32f9d
9e0b38e
 
 
d21275b
 
 
 
 
8683e61
 
 
1e4a1c0
 
 
621b61f
 
 
 
 
 
 
 
 
 
 
 
 
bc7a2c2
 
 
 
 
02cf2aa
 
 
bc7a2c2
02cf2aa
 
bc7a2c2
02cf2aa
bc7a2c2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#Fast APi Packages
from fastapi import FastAPI,File, UploadFile
from pydantic import BaseModel
import json
from typing_extensions import Annotated

#SkillExtraction Packages
from PyPDF2 import PdfReader
import psycopg2
from psycopg2 import sql
import pandas as pd
from datetime import date
import numpy as np
import spacy
import re
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from io import StringIO 
from spacy.matcher import PhraseMatcher
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
from psycopg2.extensions import register_adapter, AsIs
register_adapter(np.int64, AsIs)
import warnings
warnings.filterwarnings('ignore')

#Custom Classes for endpoints
from DbConnection import DbConnection
from UploadFile import UploadOpenFile
from SkillExtract import SkillExtractorDetails
import os
os.environ['HF_HOME'] = '/hug/cache/'

app = FastAPI()
class FileDetails(BaseModel):
    filecontents: str
    filename: str
    fileid: str
    message: str


class SkillDetails(BaseModel):
    skillid: int 
    requiredSkills: str
    softSkills: str
    goodToHaveSkills: str   
        
class FileResponse(BaseModel):
    fileid: int
    message: str



nlp = spacy.load("en_core_web_lg")
    # init skill extractor
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)

@app.get("/")
async def root():
 return {"SkillAPI":"SkillAPi Version 0.05"}
#https://vaibhav84-resumeapi.hf.space/docs
db_params = DbConnection.GetDbConnection()
def parse_csv(df):
    res = df.to_json(orient="records")
    parsed = json.loads(res)
    return parsed
    
@app.get("/ProfileMatch") 
def ProfileMatchResults():
   dbQuery = "select * from profilematch"
   conn = psycopg2.connect(**db_params)   
   df = pd.read_sql_query(dbQuery, conn)
   return parse_csv(df) 

@app.post("/UploadFile/")
def UploadFileDetails(file_data: FileDetails):   
   
   returnID = UploadOpenFile.uploadFile(file_data.filecontents,file_data.filename,db_params)
   file_data.filecontents = ""
   file_data.fileid = str(returnID)
   file_data.message = "File Uploaded Successfully!"
   
   return file_data


@app.post("/ExtractSkills/")
def ExtractSkills(skill_data: SkillDetails):
   returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,skill_data.skillid)     
   details = returnSkills.split('@')
   skill_data.requiredSkills = details[0]
   skill_data.softSkills = details[1]
   skill_data.goodToHaveSkills = details[1]
   return skill_data

@app.post("/uploadJobDescription/")
def create_upload_file(file: bytes = File(...)):
    content = file.decode('utf-8')
    lines = content.split('\n')
    return {"content": lines}

@app.post("/uploadJobDescriptionPDF/")
def upload_PDF(file: UploadFile = File(...)):
    try:
        contents = file.file.read()
        with open(file.filename, 'wb') as f:
            f.write(contents)
    except Exception:
        return {"message": "There was an error uploading the file"}
    finally:
        file.file.close()

    return {"message": f"Successfully uploaded {contents}"}

@app.post("/uploadJobDescriptionPDF2/")
def upload_PDF2(file: UploadFile = File(...)):
    text =''
    
    if file.filename.endswith("pdf"):
        pdf_reader = PdfReader(file)
            
        for page in pdf_reader.pages:
            text += page.extract_text()
        
   

    return {"message": f"Successfully uploaded {text}"}