File size: 13,557 Bytes
90c20ac
 
 
 
4aba3cf
90c20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6329efe
90c20ac
 
 
 
 
6329efe
90c20ac
6329efe
90c20ac
 
 
 
eabd638
90c20ac
 
 
 
 
5b1173d
90c20ac
 
950345a
eabd638
90c20ac
eabd638
 
 
957a3f6
90c20ac
 
 
 
 
 
 
 
 
 
 
 
 
eabd638
90c20ac
 
eabd638
 
 
 
 
 
 
90c20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabd638
 
 
 
90c20ac
 
 
 
 
 
eabd638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c20ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eabd638
 
 
 
 
 
 
 
 
 
 
 
90c20ac
 
eabd638
 
 
 
 
 
 
90c20ac
 
 
 
 
 
eabd638
 
57731b0
eabd638
11f68ea
90c20ac
 
 
 
 
6329efe
90c20ac
 
eabd638
90c20ac
 
 
 
 
 
 
 
 
 
 
eabd638
90c20ac
eabd638
 
 
 
 
 
 
90c20ac
eabd638
 
90c20ac
eabd638
 
90c20ac
eabd638
 
90c20ac
 
 
 
 
 
 
73a90ea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import psycopg2
from psycopg2 import sql
import pandas as pd
import re
class SkillExtractorDetails:

    def GetSkillId(skillname,jdmasterid,db_params):    
        #Fetching skill id from skillmaster
        conn = psycopg2.connect(**db_params)
        cursor = conn.cursor()
        query = "select skillid from skillmaster where upper(skilldetails) = (%s)"
        params = (skillname.upper(),)  
        cursor.execute(query, params)
        generated_skill_id = cursor.fetchone()[0]
        #jdmasterid = 912
        #print(generated_skill_id)
        #checking if skill id already in skilldetails
        query = "SELECT skillid FROM jdSkilldetails WHERE skillid IN (%s) and jdMasterid in (%s)"
        params = (generated_skill_id,jdmasterid,)  
        cursor.execute(query, params)
        if cursor.rowcount > 0: 
            #print("Already")
            query =''
        else:
            #print("Updating in DB")
            insert_query = sql.SQL("""INSERT INTO jdSkilldetails (Skillid, jdMasterid) VALUES (%s, %s)""")
            cursor.execute(insert_query, (generated_skill_id, jdmasterid))
            conn.commit()

        cursor.close()
        # Close the connection
        conn.close()   
        return generated_skill_id
    def skill_Validate(df, skill):
        skill = skill.upper()
        if (len(skill.split()) < 2 and len(skill) < 3) or len(skill.split())==1:
            df['skill_present'] = df['skilldetails'].apply(lambda x: re.match(rf'^{skill}$', x))
            if any(df['skill_present']):
                #print("Valid Skill")
                return 1
            else:
                #print("Not a Skill")
                return 0
        elif df['skilldetails'].str.contains(skill.upper()).any():
            #print("Valid Skill")
            return 1
        else:
            # print("Not a Skill")
            return 0 
    def getNewSkills(db_params):
        query = "select skillid,skilldetails,skilltype,skill_score from skillmaster where weightage = -2"
        conn = psycopg2.connect(**db_params)
        cursor = conn.cursor()
        df_skill_master = pd.read_sql_query(query, conn)
        df_skill_master['skilldetails'] = df_skill_master['skilldetails'].str.upper()
        cursor.close()
        # Close the connection
        conn.close()

        #print(df_skill_master)
        return df_skill_master
    def extractWords(job_description,JdMasterid,db_params):
        job_roles = []
        job_description = job_description.replace(')',' ')
        delimiters = ",", " ", " , ", ";","\n","/","\\"
        regex_pattern = '|'.join(map(re.escape, delimiters))
        df = SkillExtractorDetails.getNewSkills(db_params)
        data = re.split(regex_pattern, job_description)
        #data = job_description.split(',')
        for ds in data:
            #print(ds)
            try:
                if(SkillExtractorDetails.skill_Validate(df,ds.strip())):                
                    job_roles.append(ds) 
                    SkillExtractorDetails.GetSkillId(ds.strip(),JdMasterid,db_params)
                    print("Skills Identified* : " + ds)   
            except Exception as error:
                test = 1
        return job_roles 
    def SkillExtract(db_params,skill_extractor,JdID, IsJD):
        print("Extracting Skills for the JD...")
        # Connect to the PostgreSQL database
        conn = psycopg2.connect(**db_params)
        cursor = conn.cursor()

        jd_id = str(JdID)
        # Retrieve "id" and "description" columns from the table
        #query = sql.SQL("select jdmasterid,jobdescription from JDMaster where isskillsextracted in (0)")
        query = "select jdmasterid,jobdescription,filename from JDMaster where isskillsextracted = 0 and jdmasterid ="+ jd_id 
        CVquery = "select masterid,description,filename from CourseMaster where isskillsextracted = 0 and masterid ="+ jd_id
        # Use Pandas to read the data into a DataFrame
        if(IsJD):
            df = pd.read_sql_query(query, conn)
        else:
            df = pd.read_sql_query(CVquery, conn)    

        # Print the DataFrame (for demonstration purposes)
        #print(df)
        
        skill_details = ''
        skill_type = ''
        weightage = -1.0
        is_active = True
        Skillid = 0
        jdMasterid = 0
        OldSkillCount = 0
        NewSkillCount = 0
        if(len(df.index) > 0):
            print("Total IDs for Extractraction : " + str(len(df.index)))
        for index, row in df.iterrows():
            # Access individual columns using column names
            if(IsJD):
                id_value = row['jdmasterid']
                description_value = row['jobdescription']
            else:
                id_value = row['masterid']
                description_value = row['description']

            filename_jd = row['filename']
            OldSkillCount = 0
            NewSkillCount = 0
            skill_score = 0.0
            print("Extracting Skills For ", filename_jd + " , Id : " + str(id_value) + " , Index " + str(index + 1))

            
            annotations = skill_extractor.annotate(description_value)
            matches = annotations['results']['full_matches']+annotations['results']['ngram_scored']
            skills_list = []
            for result in matches:
                if(1==1):
                    
                    isOld = "Yes"
                    skill_id = result['skill_id']
                    skill_name1 = skill_extractor.skills_db[skill_id]['skill_name']
                    skill_name = skill_name1.split("(")[0].strip()
                    skill_type = skill_extractor.skills_db[skill_id]['skill_type']
                    skill_score = round(result['score'],2)
                    

                    if( skill_name in skills_list):
                        continue
                    skills_list.append(skill_name)
                    #print("Skill Identified : ", j['doc_node_value'])
                    query = "SELECT skillid FROM skillmaster WHERE skillDetails IN (%s)"
                    params = (skill_name,)  # Replace 'Test' with your actual variable or user input
                    cursor.execute(query, params)
                    if cursor.rowcount > 0:    
                        print("Skill Identified : ", skill_name)                
                        result = cursor.fetchall()                
                        for row in result:
                            row_as_int = [int(element) for element in row]
                            #print("Skill Already in SkillMaster")
                            OldSkillCount = OldSkillCount + 1
                            isOld = "Yes"
                            if(IsJD):
                                query = "SELECT skillid FROM jdSkilldetails WHERE skillid IN (%s) and jdMasterid in (%s)"
                            else:
                                query = "SELECT skillid FROM CourseSkilldetails WHERE skillid IN (%s) and Masterid in (%s)"    
                            params = (row_as_int[0],id_value,)  
                            cursor.execute(query, params)
                            if cursor.rowcount > 0: 
                                weightage = -1.0  
                                #print("Skill Already in SkillMaster and JDSkillDetails")
                            else:  
                                if(IsJD):
                                    Skillid = row_as_int[0]
                                    jdMasterid = id_value   
                                    insert_query = sql.SQL("""INSERT INTO jdSkilldetails (Skillid, jdMasterid) VALUES (%s, %s)""")
                                    cursor.execute(insert_query, (Skillid, jdMasterid))
                                    conn.commit()
                                else:
                                    query = "Select max(skilldetailsid) from courseskilldetails"                
                                    df = pd.read_sql_query(query, conn)
                                    CourseID = df.iat[0,0] + 1

                                    Skillid = row_as_int[0]
                                    jdMasterid = id_value   
                                    insert_query = sql.SQL("""INSERT INTO Courseskilldetails (skilldetailsid, Skillid, Masterid) VALUES (%s, %s, %s)""")
                                    cursor.execute(insert_query, (CourseID, Skillid, jdMasterid))
                                    conn.commit()

                                #print("Skill Already in SkillMaster and Inserted in JDSkillDetails")	
                                #print(row_as_int)
                    else:    
                        NewSkillCount = NewSkillCount + 1
                        isOld = "No"
                        skill_details = skill_name              
                        weightage = -1.0
                        skill_score = skill_score * 100               
                        skill_score1 = str(skill_score)
                        #skill_score = skill_score.astype(float)   
                        #print(skill_score)         
                        insert_query = sql.SQL("""INSERT INTO SkillMaster (SkillDetails, SkillType, Weightage, IsActive, skill_score) 
                        VALUES (%s, %s, %s, %s, %s) RETURNING SkillID""")
                        cursor.execute(insert_query, (skill_details, skill_type, weightage, is_active, skill_score1))
                        conn.commit()
                        generated_skill_id = cursor.fetchone()[0]
                        Skillid = generated_skill_id
                        jdMasterid = id_value
                        if(IsJD):
                            insert_query = sql.SQL("""INSERT INTO jdSkilldetails (Skillid, jdMasterid) VALUES (%s, %s)""")
                            cursor.execute(insert_query, (Skillid, jdMasterid))
                            conn.commit()
                        else:
                            query = "Select max(skilldetailsid) from courseskilldetails"                
                            df = pd.read_sql_query(query, conn)
                            CourseID = df.iat[0,0] + 1

                            insert_query = sql.SQL("""INSERT INTO CourseSkilldetails (skilldetailsid,Skillid, Masterid) VALUES (%s, %s, %s)""")
                            cursor.execute(insert_query, (CourseID,Skillid, jdMasterid))
                            conn.commit()    
                        print("Skill Identified : ", skill_name)
                        #print("Skill inserted in SkillMaster and Inserted in JDSkillDetails")

            
            if(IsJD):
                SkillExtractorDetails.extractWords(description_value,id_value,db_params)
                query = "update public.jdmaster set isskillsextracted = 1 where jdmasterid = (%s)"
            else:
                query = "update public.coursemaster set isskillsextracted = 1 where masterid = (%s)"
            
            params = (id_value,)  
            cursor.execute(query, params)
            conn.commit()
            print("Skills Updated for Skills Extraction for file ", filename_jd)
            print("Total Skills : ", len(skills_list))
            return SkillExtractorDetails.latestSkillDetails(id_value,db_params,IsJD)
    def latestSkillDetails(jid,db_params,IsJD):
        data = ""
        data = SkillExtractorDetails.display_skills(jid,db_params,IsJD)
        #    jid = df.iat[0,0]
        return data
    def tuple_to_int(tup):
        if len(tup) == 1:
            return tup[0]
        else:
            return tup[0] * (10 ** (len(tup) - 1)) + SkillExtractorDetails.tuple_to_int(tup[1:])


    def skill_check(dbQuery,db_params,IsJD):
        conn = psycopg2.connect(**db_params)
        cursor = conn.cursor()
        df = pd.read_sql_query(dbQuery, conn)
        Required_Skills=''
        for index, row in df.iterrows():   
        
            skillname = row['skillname']
            Required_Skills = Required_Skills + ', '+ skillname
        
        Required_Skills = Required_Skills[2:] 
        return Required_Skills
    def display_skills(id, db_params,IsJD):
        jd=str(id)
        tableName = 'CVSkillDetails'
        if(IsJD):
            tableName = 'SkillDetails'
        

        query = "select skillname from " + tableName +"  where id = "+ jd +" and skillscore > 99 and skilltype = 'Hard Skill'"    
        RequiredSkills_Hard  = SkillExtractorDetails.skill_check(query,db_params,IsJD)

        query = "select skillname from " + tableName +"  where id = "+ jd +" and skillscore > 50 and skilltype = 'Soft Skill'"  
        RequiredSkills_Soft  = SkillExtractorDetails.skill_check(query,db_params,IsJD)

        query = "select skillname from " + tableName +"  where id = "+ jd +" and skillscore < 50 and skilltype = 'Soft Skill'"  
        RequiredSkills_G1  = SkillExtractorDetails.skill_check(query,db_params,IsJD)

        query = "select skillname from " + tableName +"  where id = "+ jd +" and skillscore < 99 and skilltype = 'Hard Skill'"  
        RequiredSkills_G2  = SkillExtractorDetails.skill_check(query,db_params,IsJD)

        print('')
        print("Required Skills      : " + RequiredSkills_Hard)
        print('')
        print("Required Soft Skills : " + RequiredSkills_Soft)
        print('')
        print("Good to have Skills  : " + RequiredSkills_G1 +  " " + RequiredSkills_G2)
        return RequiredSkills_Hard + "@" + RequiredSkills_Soft + "@" + RequiredSkills_G1 + " " + RequiredSkills_G2