Spaces:
Sleeping
Sleeping
File size: 5,126 Bytes
99bbd64 e74682a 99bbd64 89ac774 d034937 7dbf682 41d24fb e74682a 7dbf682 41d24fb afbea99 41d24fb bcc36a0 24a440f fa24c7d e74682a 41d24fb e74682a fa53273 41d24fb d034937 41d24fb e74682a 41d24fb d034937 41d24fb fa53273 41d24fb fa53273 e74682a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
#Fast APi Packages
from fastapi import FastAPI, File, HTTPException
from pydantic import BaseModel
import json
from typing import List, Dict, Any
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from datetime import datetime
import warnings
import os
import logging
import requests
import io
warnings.filterwarnings('ignore')
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI()
# URL of the Excel file
EXCEL_URL = "https://huggingface.co/spaces/Vaibhav84/RecommendationAPI/resolve/main/DataSetSample.xlsx"
try:
# Download the file from URL
logger.info(f"Attempting to download Excel file from: {EXCEL_URL}")
response = requests.get(EXCEL_URL)
response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx
# Read the Excel file from the downloaded content
excel_content = io.BytesIO(response.content)
purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History',
parse_dates=['Purchase_Date'])
logger.info("Successfully downloaded and loaded Excel file")
# Process the data
purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str)
product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict()
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
logger.info("Data processing completed successfully")
except Exception as e:
logger.error(f"Error downloading or processing data: {str(e)}")
raise
def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]:
"""
Get both purchased items and recommendations for a user
"""
user_id = str(user_id)
if user_id not in purchase_counts.index:
return [], []
purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0])
purchased_items_info = []
user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id]
for item in purchased_items:
item_purchases = user_purchases[user_purchases['Product_Id'] == item]
total_amount = float(item_purchases['Amount (In Dollars)'].sum())
last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max())
category = product_categories.get(item, 'Unknown')
purchased_items_info.append({
'product_id': item,
'category': category,
'total_amount': total_amount,
'last_purchase': last_purchase.strftime('%Y-%m-%d')
})
user_idx = purchase_counts.index.get_loc(user_id)
user_history = sparse_purchase_counts[user_idx].toarray().flatten()
similarities = cosine_similarities.dot(user_history)
purchased_indices = np.where(user_history > 0)[0]
similarities[purchased_indices] = 0
recommended_indices = np.argsort(similarities)[::-1][:n]
recommended_items = list(purchase_counts.columns[recommended_indices])
recommended_items = [item for item in recommended_items if item not in purchased_items]
recommended_items_info = [
{
'product_id': item,
'category': product_categories.get(item, 'Unknown')
}
for item in recommended_items
]
return purchased_items_info, recommended_items_info
@app.get("/")
async def root():
return {
"message": "Welcome to the Recommendation API",
"status": "running",
"data_loaded": purchase_history is not None
}
@app.get("/recommendations/{customer_id}")
async def get_recommendations(customer_id: str, n: int = 5):
"""
Get recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing purchase history and recommendations
"""
try:
purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"purchase_history": purchased_items,
"recommendations": recommended_items
}
except Exception as e:
logger.error(f"Error processing request for customer {customer_id}: {str(e)}")
raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}")
@app.get("/health")
async def health_check():
"""
Health check endpoint that returns system information
"""
return {
"status": "healthy",
"data_loaded": purchase_history is not None,
"number_of_customers": len(purchase_counts.index) if purchase_history is not None else 0,
"number_of_products": len(purchase_counts.columns) if purchase_history is not None else 0
}
|