File size: 5,126 Bytes
99bbd64
e74682a
99bbd64
89ac774
d034937
 
 
 
 
 
7dbf682
41d24fb
 
e74682a
 
7dbf682
41d24fb
afbea99
41d24fb
 
 
bcc36a0
24a440f
fa24c7d
e74682a
 
41d24fb
 
e74682a
 
 
 
 
 
 
 
 
 
 
fa53273
41d24fb
 
 
 
 
d034937
41d24fb
 
 
e74682a
41d24fb
d034937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41d24fb
 
 
fa53273
 
 
 
 
41d24fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa53273
 
 
 
 
 
e74682a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#Fast APi Packages
from fastapi import FastAPI, File, HTTPException
from pydantic import BaseModel
import json
from typing import List, Dict, Any
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from datetime import datetime
import warnings
import os
import logging
import requests
import io

warnings.filterwarnings('ignore')

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

# URL of the Excel file
EXCEL_URL = "https://huggingface.co/spaces/Vaibhav84/RecommendationAPI/resolve/main/DataSetSample.xlsx"

try:
    # Download the file from URL
    logger.info(f"Attempting to download Excel file from: {EXCEL_URL}")
    response = requests.get(EXCEL_URL)
    response.raise_for_status()  # Raises an HTTPError if the status is 4xx, 5xx
    
    # Read the Excel file from the downloaded content
    excel_content = io.BytesIO(response.content)
    purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History', 
                                   parse_dates=['Purchase_Date'])
    logger.info("Successfully downloaded and loaded Excel file")
    
    # Process the data
    purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str)
    product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict()
    purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
    sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
    cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
    
    logger.info("Data processing completed successfully")
    
except Exception as e:
    logger.error(f"Error downloading or processing data: {str(e)}")
    raise

def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]:
    """
    Get both purchased items and recommendations for a user
    """
    user_id = str(user_id)
    
    if user_id not in purchase_counts.index:
        return [], []
    
    purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0])
    
    purchased_items_info = []
    user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id]
    
    for item in purchased_items:
        item_purchases = user_purchases[user_purchases['Product_Id'] == item]
        total_amount = float(item_purchases['Amount (In Dollars)'].sum())
        last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max())
        category = product_categories.get(item, 'Unknown')
        purchased_items_info.append({
            'product_id': item,
            'category': category,
            'total_amount': total_amount,
            'last_purchase': last_purchase.strftime('%Y-%m-%d')
        })
    
    user_idx = purchase_counts.index.get_loc(user_id)
    user_history = sparse_purchase_counts[user_idx].toarray().flatten()
    similarities = cosine_similarities.dot(user_history)
    purchased_indices = np.where(user_history > 0)[0]
    similarities[purchased_indices] = 0
    recommended_indices = np.argsort(similarities)[::-1][:n]
    recommended_items = list(purchase_counts.columns[recommended_indices])
    recommended_items = [item for item in recommended_items if item not in purchased_items]
    
    recommended_items_info = [
        {
            'product_id': item,
            'category': product_categories.get(item, 'Unknown')
        }
        for item in recommended_items
    ]

    return purchased_items_info, recommended_items_info

@app.get("/")
async def root():
    return {
        "message": "Welcome to the Recommendation API",
        "status": "running",
        "data_loaded": purchase_history is not None
    }

@app.get("/recommendations/{customer_id}")
async def get_recommendations(customer_id: str, n: int = 5):
    """
    Get recommendations for a customer
    
    Parameters:
    - customer_id: The ID of the customer
    - n: Number of recommendations to return (default: 5)
    
    Returns:
    - JSON object containing purchase history and recommendations
    """
    try:
        purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n)
        
        return {
            "customer_id": customer_id,
            "purchase_history": purchased_items,
            "recommendations": recommended_items
        }
    except Exception as e:
        logger.error(f"Error processing request for customer {customer_id}: {str(e)}")
        raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}")

@app.get("/health")
async def health_check():
    """
    Health check endpoint that returns system information
    """
    return {
        "status": "healthy",
        "data_loaded": purchase_history is not None,
        "number_of_customers": len(purchase_counts.index) if purchase_history is not None else 0,
        "number_of_products": len(purchase_counts.columns) if purchase_history is not None else 0
    }