File size: 1,512 Bytes
a13e09c
 
163e27f
 
a13e09c
 
 
163e27f
 
c2f2c32
a13e09c
 
 
 
 
 
 
 
 
 
c2f2c32
b4636a3
 
 
 
 
a13e09c
 
 
 
 
 
 
 
163e27f
 
c2f2c32
 
 
 
a13e09c
163e27f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import re
from datetime import datetime
import psycopg2
import pandas as pd
class SkillExtractorDetailsV1:


    def GetSkillData(skill_extractor, inputData, db_params):
        getdbskills = SkillExtractorDetailsV1.GetSkillDatafromDB(db_params)
        
        skills_list = []
        annotations = skill_extractor.annotate(inputData)
        matches = annotations['results']['full_matches']+annotations['results']['ngram_scored']
        skills_list = []
        for result in matches:
            skill_id = result['skill_id']
            skill_name1 = skill_extractor.skills_db[skill_id]['skill_name']
            skill_name = skill_name1.split("(")[0].strip()
            skill_type = skill_extractor.skills_db[skill_id]['skill_type']
            skill_score = round(result['score'],2)
            result = getdbskills[getdbskills['skill'] == skill_name.upper()]
            print(result.empty)
            if(result.empty):
                print('----**')
            else:
                print('----'+ result)    
            if(skill_type != 'Soft Skill'):
                #print(skill_name)
                if( skill_name in skills_list):
                    continue
                skills_list.append(skill_name)

        return skills_list        

    def GetSkillDatafromDB(db_params):
        conn = psycopg2.connect(**db_params)
        
        query = "select upper(skilldetails) skill from skillmaster where weightage = 0"
        df = pd.read_sql_query(query, conn)
        return df