Spaces:
Sleeping
Sleeping
File size: 1,512 Bytes
a13e09c 163e27f a13e09c 163e27f c2f2c32 a13e09c c2f2c32 b4636a3 a13e09c 163e27f c2f2c32 a13e09c 163e27f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import re
from datetime import datetime
import psycopg2
import pandas as pd
class SkillExtractorDetailsV1:
def GetSkillData(skill_extractor, inputData, db_params):
getdbskills = SkillExtractorDetailsV1.GetSkillDatafromDB(db_params)
skills_list = []
annotations = skill_extractor.annotate(inputData)
matches = annotations['results']['full_matches']+annotations['results']['ngram_scored']
skills_list = []
for result in matches:
skill_id = result['skill_id']
skill_name1 = skill_extractor.skills_db[skill_id]['skill_name']
skill_name = skill_name1.split("(")[0].strip()
skill_type = skill_extractor.skills_db[skill_id]['skill_type']
skill_score = round(result['score'],2)
result = getdbskills[getdbskills['skill'] == skill_name.upper()]
print(result.empty)
if(result.empty):
print('----**')
else:
print('----'+ result)
if(skill_type != 'Soft Skill'):
#print(skill_name)
if( skill_name in skills_list):
continue
skills_list.append(skill_name)
return skills_list
def GetSkillDatafromDB(db_params):
conn = psycopg2.connect(**db_params)
query = "select upper(skilldetails) skill from skillmaster where weightage = 0"
df = pd.read_sql_query(query, conn)
return df
|