Spaces:
Sleeping
Sleeping
File size: 6,560 Bytes
99bbd64 d034937 99bbd64 89ac774 99bbd64 d034937 99bbd64 89509c4 7dbf682 2885677 9e0b38e 99bbd64 9e0b38e 7dbf682 afbea99 7dbf682 6e78f7b fa24c7d 4aba3cf ffb1952 afbea99 a61f95d 2885677 38021f1 a61f95d bcc36a0 4d13280 bcc36a0 24a440f 9ce2997 9e0b38e 2885677 fa24c7d d034937 24a440f ea9181c 0d4ebbf 89ac774 07479a9 ea9181c 8f0089b ea9181c c7e63c1 d034937 f0a5434 634a79e 11e22b7 634a79e cad2718 38021f1 4006ccd fd4a491 afbea99 b6ee5b6 afbea99 a61f95d a647161 1bd3b0e b6ee5b6 a61f95d 55d2736 a647161 ce2b503 a647161 55d2736 29aed4f d375dac 55d2736 d034937 a3d0e12 634a79e 746a354 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
#Fast APi Packages
from fastapi import FastAPI,File, HTTPException
from pydantic import BaseModel
import json
from typing import List, Dict, Any
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from datetime import datetime
#SkillExtraction Packages
import psycopg2
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
import spacy
from sklearn.metrics.pairwise import cosine_similarity
from spacy.matcher import PhraseMatcher
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
from psycopg2.extensions import register_adapter, AsIs
register_adapter(np.int64, AsIs)
import warnings
warnings.filterwarnings('ignore')
#Custom Classes for endpoints
from DbConnection import DbConnection
from UploadFile import UploadOpenFile
from SkillExtract import SkillExtractorDetails
from ExtractContentsFromFile import ExtractContentFromFile
from RemoveSkills import RemoveSkill
from AddSkillDetails import AddSkill
from SkillMatcher import SkillMatch
from SkillExtractV1 import SkillExtractorDetailsV1
import ClassModals
import os
os.environ['HF_HOME'] = '/hug/cache/'
app = FastAPI()
nlp = spacy.load("en_core_web_lg")
# init skill extractor
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)
model = SentenceTransformer('all-MiniLM-L6-v2')
purchase_history = pd.read_excel('datasetsample.xlsx', sheet_name='Transaction History',
parse_dates=['Purchase_Date'])
purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str)
product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict()
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
@app.get("/")
async def root():
return {"Recommendation":"Recommendation Version 1.00, https://vaibhav84-recommendation.hf.space/redoc , https://vaibhav84-recommendation.hf.space/docs"}
def parse_csv(df):
res = df.to_json(orient="records")
parsed = json.loads(res)
return parsed
@app.post("/CustomerLogin/")
def UploadJobDescription(CustomerID : str, CustomerPwd: str):
try:
if CustomerID != "" and CustomerPwd == (CustomerID + "123"):
return "Login Successful"
else:
return "Login Failed"
except Exception as e:
return "An error occurred: {e}"
@app.get("/recommendations/{customer_id}")
async def get_recommendations(customer_id: str, n: int = 5):
"""
Get recommendations for a customer
Parameters:
- customer_id: The ID of the customer
- n: Number of recommendations to return (default: 5)
Returns:
- JSON object containing purchase history and recommendations
"""
try:
purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n)
return {
"customer_id": customer_id,
"purchase_history": purchased_items,
"recommendations": recommended_items
}
except Exception as e:
raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}")
@app.post("/UploadJobDescription/")
async def UploadJobDescription(file: bytes = File(...), FileName: str = "sample.pdf"):
try:
text= ExtractContentFromFile.ExtractDataFromFile(FileName,file)
returnSkills = SkillExtractorDetailsV1.GetSkillData(skill_extractor,text)
return parse_csv(returnSkills)
except Exception as e:
return "An error occurred: {e}"
@app.delete("/RemoveSkillsByName/")
def RemoveSkills(SkillName : str):
RemoveSkill.RemoveSkillDetails(SkillName)
return "Skill Removed Successfully"
@app.post("/AddSkillDetails/")
def AddSkills(Skills : ClassModals.Modals.AddSkillDetails):
skilldetailsStr = Skills.SkillName + ',' + Skills.SkillType + ',' + str(Skills.SkillScore)
return AddSkill.AddSkillDetails(skilldetailsStr)
@app.put("/UpdateSkillDetails/")
def UpdateSkills(Skills : ClassModals.Modals.UpdateSkillDetails):
skilldetailsStr = Skills.SkillName + ',' + str(Skills.SkillWeightage)
return AddSkill.UpdateSkillDetails(skilldetailsStr)
@app.get("/GetAllSkillDetails/")
def AllSkills():
return (AddSkill.GetSkillDetails())
def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]:
"""
Get both purchased items and recommendations for a user
"""
user_id = str(user_id)
if user_id not in purchase_counts.index:
return [], []
purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0])
purchased_items_info = []
user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id]
for item in purchased_items:
item_purchases = user_purchases[user_purchases['Product_Id'] == item]
total_amount = float(item_purchases['Amount (In Dollars)'].sum())
last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max())
category = product_categories.get(item, 'Unknown')
purchased_items_info.append({
'product_id': item,
'category': category,
'total_amount': total_amount,
'last_purchase': last_purchase.strftime('%Y-%m-%d')
})
user_idx = purchase_counts.index.get_loc(user_id)
user_history = sparse_purchase_counts[user_idx].toarray().flatten()
similarities = cosine_similarities.dot(user_history)
purchased_indices = np.where(user_history > 0)[0]
similarities[purchased_indices] = 0
recommended_indices = np.argsort(similarities)[::-1][:n]
recommended_items = list(purchase_counts.columns[recommended_indices])
recommended_items = [item for item in recommended_items if item not in purchased_items]
recommended_items_info = [
{
'product_id': item,
'category': product_categories.get(item, 'Unknown')
}
for item in recommended_items
]
return purchased_items_info, recommended_items_info
#return JSONResponse(content={"message": "Here's your interdimensional portal." , "mes1":"data2"})
#https://vaibhav84-resumeapi.hf.space/docs
#https://vaibhav84-resumeapi.hf.space/redoc d |