Spaces:
Sleeping
Sleeping
API
Browse files
app.py
CHANGED
@@ -14,7 +14,8 @@ import os
|
|
14 |
import logging
|
15 |
import requests
|
16 |
import io
|
17 |
-
|
|
|
18 |
|
19 |
warnings.filterwarnings('ignore')
|
20 |
|
@@ -37,6 +38,11 @@ try:
|
|
37 |
excel_content = io.BytesIO(response.content)
|
38 |
purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History',
|
39 |
parse_dates=['Purchase_Date'])
|
|
|
|
|
|
|
|
|
|
|
40 |
logger.info("Successfully downloaded and loaded Excel file")
|
41 |
|
42 |
# Process the data
|
@@ -45,6 +51,14 @@ try:
|
|
45 |
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
|
46 |
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
|
47 |
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
logger.info("Data processing completed successfully")
|
50 |
|
@@ -208,3 +222,135 @@ async def login(customer_id: str, password: str):
|
|
208 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
209 |
detail=f"Error during login process: {str(e)}"
|
210 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
import logging
|
15 |
import requests
|
16 |
import io
|
17 |
+
from sklearn.preprocessing import StandardScaler
|
18 |
+
from collections import defaultdict
|
19 |
|
20 |
warnings.filterwarnings('ignore')
|
21 |
|
|
|
38 |
excel_content = io.BytesIO(response.content)
|
39 |
purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History',
|
40 |
parse_dates=['Purchase_Date'])
|
41 |
+
|
42 |
+
# Read Customer Profile sheet
|
43 |
+
excel_content.seek(0) # Reset buffer position
|
44 |
+
customer_profiles = pd.read_excel(excel_content, sheet_name='Customer Profile (Individual)')
|
45 |
+
|
46 |
logger.info("Successfully downloaded and loaded Excel file")
|
47 |
|
48 |
# Process the data
|
|
|
51 |
purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0)
|
52 |
sparse_purchase_counts = sparse.csr_matrix(purchase_counts)
|
53 |
cosine_similarities = cosine_similarity(sparse_purchase_counts.T)
|
54 |
+
|
55 |
+
# Process customer profiles data
|
56 |
+
customer_profiles['Customer_Id'] = customer_profiles['Customer_Id'].astype(str)
|
57 |
+
|
58 |
+
# Normalize numerical features if they exist
|
59 |
+
numerical_features = ['Age', 'Income'] # Add or modify based on your actual columns
|
60 |
+
scaler = StandardScaler()
|
61 |
+
customer_profiles[numerical_features] = scaler.fit_transform(customer_profiles[numerical_features])
|
62 |
|
63 |
logger.info("Data processing completed successfully")
|
64 |
|
|
|
222 |
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
223 |
detail=f"Error during login process: {str(e)}"
|
224 |
)
|
225 |
+
# Add content recommendation function
|
226 |
+
def get_content_recommendations(customer_id: str, n: int = 5) -> List[Dict]:
|
227 |
+
"""
|
228 |
+
Get content recommendations based on customer profile
|
229 |
+
"""
|
230 |
+
try:
|
231 |
+
# Get customer profile
|
232 |
+
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
|
233 |
+
|
234 |
+
# Define content rules based on customer attributes
|
235 |
+
content_suggestions = []
|
236 |
+
|
237 |
+
# Age-based recommendations
|
238 |
+
age = customer_profile['Age'] * scaler.scale_[0] + scaler.mean_[0] # Denormalize age
|
239 |
+
|
240 |
+
if age < 25:
|
241 |
+
content_suggestions.extend([
|
242 |
+
{"type": "Video", "title": "Getting Started with Personal Finance", "category": "Financial Education"},
|
243 |
+
{"type": "Article", "title": "Budgeting Basics for Young Adults", "category": "Financial Planning"},
|
244 |
+
{"type": "Interactive", "title": "Investment 101 Quiz", "category": "Education"}
|
245 |
+
])
|
246 |
+
elif age < 40:
|
247 |
+
content_suggestions.extend([
|
248 |
+
{"type": "Video", "title": "Investment Strategies for Growing Wealth", "category": "Investment"},
|
249 |
+
{"type": "Article", "title": "Family Financial Planning Guide", "category": "Financial Planning"},
|
250 |
+
{"type": "Webinar", "title": "Real Estate Investment Basics", "category": "Investment"}
|
251 |
+
])
|
252 |
+
else:
|
253 |
+
content_suggestions.extend([
|
254 |
+
{"type": "Video", "title": "Retirement Planning Strategies", "category": "Retirement"},
|
255 |
+
{"type": "Article", "title": "Estate Planning Essentials", "category": "Financial Planning"},
|
256 |
+
{"type": "Webinar", "title": "Tax Optimization for Retirement", "category": "Tax Planning"}
|
257 |
+
])
|
258 |
+
|
259 |
+
# Income-based recommendations
|
260 |
+
income = customer_profile['Income'] * scaler.scale_[1] + scaler.mean_[1] # Denormalize income
|
261 |
+
|
262 |
+
if income < 50000:
|
263 |
+
content_suggestions.extend([
|
264 |
+
{"type": "Video", "title": "Debt Management Strategies", "category": "Debt Management"},
|
265 |
+
{"type": "Article", "title": "Saving on a Tight Budget", "category": "Budgeting"}
|
266 |
+
])
|
267 |
+
elif income < 100000:
|
268 |
+
content_suggestions.extend([
|
269 |
+
{"type": "Video", "title": "Tax-Efficient Investment Strategies", "category": "Investment"},
|
270 |
+
{"type": "Article", "title": "Maximizing Your 401(k)", "category": "Retirement"}
|
271 |
+
])
|
272 |
+
else:
|
273 |
+
content_suggestions.extend([
|
274 |
+
{"type": "Video", "title": "Advanced Tax Planning Strategies", "category": "Tax Planning"},
|
275 |
+
{"type": "Article", "title": "High-Net-Worth Investment Guide", "category": "Investment"}
|
276 |
+
])
|
277 |
+
|
278 |
+
# Add personalization based on purchase history
|
279 |
+
if customer_id in purchase_history['Customer_Id'].unique():
|
280 |
+
customer_purchases = purchase_history[purchase_history['Customer_Id'] == customer_id]
|
281 |
+
categories = customer_purchases['Category'].unique()
|
282 |
+
|
283 |
+
for category in categories:
|
284 |
+
if category == 'Investment':
|
285 |
+
content_suggestions.append({
|
286 |
+
"type": "Video",
|
287 |
+
"title": f"Advanced {category} Strategies",
|
288 |
+
"category": category
|
289 |
+
})
|
290 |
+
elif category == 'Insurance':
|
291 |
+
content_suggestions.append({
|
292 |
+
"type": "Article",
|
293 |
+
"title": f"Understanding Your {category} Options",
|
294 |
+
"category": category
|
295 |
+
})
|
296 |
+
|
297 |
+
# Remove duplicates and limit to n recommendations
|
298 |
+
seen = set()
|
299 |
+
unique_suggestions = []
|
300 |
+
for suggestion in content_suggestions:
|
301 |
+
key = (suggestion['title'], suggestion['type'])
|
302 |
+
if key not in seen:
|
303 |
+
seen.add(key)
|
304 |
+
unique_suggestions.append(suggestion)
|
305 |
+
|
306 |
+
return unique_suggestions[:n]
|
307 |
+
|
308 |
+
except Exception as e:
|
309 |
+
logger.error(f"Error generating content recommendations: {str(e)}")
|
310 |
+
return []
|
311 |
+
|
312 |
+
# Add new endpoint for content recommendations
|
313 |
+
@app.get("/content-recommendations/{customer_id}")
|
314 |
+
async def get_customer_content_recommendations(customer_id: str, n: int = 5):
|
315 |
+
"""
|
316 |
+
Get personalized content recommendations for a customer
|
317 |
+
|
318 |
+
Parameters:
|
319 |
+
- customer_id: The ID of the customer
|
320 |
+
- n: Number of recommendations to return (default: 5)
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
- JSON object containing personalized content recommendations
|
324 |
+
"""
|
325 |
+
try:
|
326 |
+
# Validate customer
|
327 |
+
if customer_id not in customer_profiles['Customer_Id'].unique():
|
328 |
+
raise HTTPException(
|
329 |
+
status_code=status.HTTP_404_NOT_FOUND,
|
330 |
+
detail="Customer ID not found"
|
331 |
+
)
|
332 |
+
|
333 |
+
# Get customer profile summary
|
334 |
+
customer_profile = customer_profiles[customer_profiles['Customer_Id'] == customer_id].iloc[0]
|
335 |
+
profile_summary = {
|
336 |
+
"age_group": "Young" if customer_profile['Age'] < 25 else "Middle" if customer_profile['Age'] < 40 else "Senior",
|
337 |
+
"income_level": "Low" if customer_profile['Income'] < 50000 else "Medium" if customer_profile['Income'] < 100000 else "High"
|
338 |
+
}
|
339 |
+
|
340 |
+
# Get content recommendations
|
341 |
+
recommendations = get_content_recommendations(customer_id, n)
|
342 |
+
|
343 |
+
return {
|
344 |
+
"customer_id": customer_id,
|
345 |
+
"profile_summary": profile_summary,
|
346 |
+
"recommendations": recommendations
|
347 |
+
}
|
348 |
+
|
349 |
+
except HTTPException:
|
350 |
+
raise
|
351 |
+
except Exception as e:
|
352 |
+
logger.error(f"Error processing content recommendations for customer {customer_id}: {str(e)}")
|
353 |
+
raise HTTPException(
|
354 |
+
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
355 |
+
detail=f"Error processing request: {str(e)}"
|
356 |
+
)
|