#Fast APi Packages from fastapi import FastAPI, File, HTTPException from pydantic import BaseModel import json from typing import List, Dict, Any import pandas as pd import numpy as np from sklearn.metrics.pairwise import cosine_similarity from scipy import sparse from datetime import datetime import warnings import os import logging import requests import io warnings.filterwarnings('ignore') # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = FastAPI() # URL of the Excel file EXCEL_URL = "https://huggingface.co/spaces/Vaibhav84/RecommendationAPI/resolve/main/DataSetSample.xlsx" try: # Download the file from URL logger.info(f"Attempting to download Excel file from: {EXCEL_URL}") response = requests.get(EXCEL_URL) response.raise_for_status() # Raises an HTTPError if the status is 4xx, 5xx # Read the Excel file from the downloaded content excel_content = io.BytesIO(response.content) purchase_history = pd.read_excel(excel_content, sheet_name='Transaction History', parse_dates=['Purchase_Date']) logger.info("Successfully downloaded and loaded Excel file") # Process the data purchase_history['Customer_Id'] = purchase_history['Customer_Id'].astype(str) product_categories = purchase_history[['Product_Id', 'Category']].drop_duplicates().set_index('Product_Id')['Category'].to_dict() purchase_counts = purchase_history.groupby(['Customer_Id', 'Product_Id']).size().unstack(fill_value=0) sparse_purchase_counts = sparse.csr_matrix(purchase_counts) cosine_similarities = cosine_similarity(sparse_purchase_counts.T) logger.info("Data processing completed successfully") except Exception as e: logger.error(f"Error downloading or processing data: {str(e)}") raise def get_customer_items_and_recommendations(user_id: str, n: int = 5) -> tuple[List[Dict], List[Dict]]: """ Get both purchased items and recommendations for a user """ user_id = str(user_id) if user_id not in purchase_counts.index: return [], [] purchased_items = list(purchase_counts.columns[purchase_counts.loc[user_id] > 0]) purchased_items_info = [] user_purchases = purchase_history[purchase_history['Customer_Id'] == user_id] for item in purchased_items: item_purchases = user_purchases[user_purchases['Product_Id'] == item] total_amount = float(item_purchases['Amount (In Dollars)'].sum()) last_purchase = pd.to_datetime(item_purchases['Purchase_Date'].max()) category = product_categories.get(item, 'Unknown') purchased_items_info.append({ 'product_id': item, 'category': category, 'total_amount': total_amount, 'last_purchase': last_purchase.strftime('%Y-%m-%d') }) user_idx = purchase_counts.index.get_loc(user_id) user_history = sparse_purchase_counts[user_idx].toarray().flatten() similarities = cosine_similarities.dot(user_history) purchased_indices = np.where(user_history > 0)[0] similarities[purchased_indices] = 0 recommended_indices = np.argsort(similarities)[::-1][:n] recommended_items = list(purchase_counts.columns[recommended_indices]) recommended_items = [item for item in recommended_items if item not in purchased_items] recommended_items_info = [ { 'product_id': item, 'category': product_categories.get(item, 'Unknown') } for item in recommended_items ] return purchased_items_info, recommended_items_info @app.get("/") async def root(): return { "message": "Welcome to the Recommendation API", "status": "running", "data_loaded": purchase_history is not None } @app.get("/recommendations/{customer_id}") async def get_recommendations(customer_id: str, n: int = 5): """ Get recommendations for a customer Parameters: - customer_id: The ID of the customer - n: Number of recommendations to return (default: 5) Returns: - JSON object containing purchase history and recommendations """ try: purchased_items, recommended_items = get_customer_items_and_recommendations(customer_id, n) return { "customer_id": customer_id, "purchase_history": purchased_items, "recommendations": recommended_items } except Exception as e: logger.error(f"Error processing request for customer {customer_id}: {str(e)}") raise HTTPException(status_code=404, detail=f"Error processing customer ID: {customer_id}. {str(e)}") @app.get("/health") async def health_check(): """ Health check endpoint that returns system information """ return { "status": "healthy", "data_loaded": purchase_history is not None, "number_of_customers": len(purchase_counts.index) if purchase_history is not None else 0, "number_of_products": len(purchase_counts.columns) if purchase_history is not None else 0 }