File size: 3,916 Bytes
99bbd64 8683e61 99bbd64 89ac774 8683e61 4006ccd 99bbd64 f40468d 99bbd64 89509c4 99bbd64 7dbf682 9e0b38e 99bbd64 0f5f3bf 99bbd64 ba60b2c 9e0b38e 7dbf682 f40468d 7dbf682 6e78f7b fa24c7d 4aba3cf ffb1952 bcc36a0 4d13280 bcc36a0 24a440f 4696f89 a3cdaed 4696f89 9ce2997 f296b1d 9ce2997 9e0b38e fa24c7d 24a440f 194b1f0 fa24c7d 6e78f7b 89ac774 07479a9 c7e63c1 9ce2997 ffb1952 8d08b4d ca9140a 320e565 94d87be ffb1952 4006ccd b076bad 89509c4 fa24c7d b076bad 8d08b4d b076bad d21275b 4006ccd ffb1952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
#Fast APi Packages
from fastapi import FastAPI,File, UploadFile
from pydantic import BaseModel
import json
from typing_extensions import Annotated
from fastapi.encoders import jsonable_encoder
from fastapi.responses import JSONResponse
#SkillExtraction Packages
import PyPDF2
from PyPDF2 import PdfReader
import psycopg2
from psycopg2 import sql
import pandas as pd
from datetime import date
import numpy as np
import spacy
import re
import docx2txt
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import io
from spacy.matcher import PhraseMatcher
from skillNer.general_params import SKILL_DB
from skillNer.skill_extractor_class import SkillExtractor
from psycopg2.extensions import register_adapter, AsIs
register_adapter(np.int64, AsIs)
import warnings
warnings.filterwarnings('ignore')
from io import BytesIO
import requests
#Custom Classes for endpoints
from DbConnection import DbConnection
from UploadFile import UploadOpenFile
from SkillExtract import SkillExtractorDetails
from ExtractContentsFromFile import ExtractContentFromFile
import os
os.environ['HF_HOME'] = '/hug/cache/'
app = FastAPI()
class FileDetails(BaseModel):
filecontents: str
filename: str
fileid: str
message: str
class SkillDetails(BaseModel):
skillid: int
requiredSkills: str
softSkills: str
goodToHaveSkills: str
class SkillData(BaseModel):
filename: str
nlp = spacy.load("en_core_web_lg")
# init skill extractor
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher)
@app.get("/")
async def root():
return {"SkillAPI":"SkillAPi Version 0.05"}
#https://vaibhav84-resumeapi.hf.space/docs
db_params = DbConnection.GetDbConnection()
def parse_csv(df):
res = df.to_json(orient="records")
parsed = json.loads(res)
return parsed
@app.post("/uploadJobDescription/")
def uploadJobDescription(file: bytes = File(...), FileName: str = "sample.pdf"):
text= ExtractContentFromFile.ExtractDataFromFile(FileName,file)
returnID = UploadOpenFile.uploadFile(text,FileName,db_params)
returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,returnID)
details = returnSkills.split('@')
data = {'Data':['Required Skills', 'Soft Skills', 'Good to have Skills'], 'Values':[details[0], details[1], details[2]]}
df = pd.DataFrame(data)
return parse_csv(df)
@app.get("/AllProfileMatchResults")
def AllProfileMatchResults():
dbQuery = "select * from profilematch"
conn = psycopg2.connect(**db_params)
df = pd.read_sql_query(dbQuery, conn)
return parse_csv(df)
@app.post("/UploadOpenText/")
def UploadOpenText(file_data: FileDetails):
returnID = UploadOpenFile.uploadFile(file_data.filecontents,file_data.filename,db_params)
file_data.filecontents = ""
file_data.fileid = str(returnID)
file_data.message = "File Uploaded Successfully!"
return file_data
@app.post("/ExtractSkillsByJobID/")
def ExtractSkillsByJobID(skill_data: SkillDetails):
returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,skill_data.skillid)
details = returnSkills.split('@')
skill_data.requiredSkills = details[0]
skill_data.softSkills = details[1]
skill_data.goodToHaveSkills = details[1]
return skill_data
@app.post("/RemoveSkillsByName/")
def RemoveSkills(SkillName : str):
conn = psycopg2.connect(**db_params)
cursor = conn.cursor()
SkillName = data.split(':')[1]
print("Removing Skills " + SkillName)
query = "update skillmaster set weightage = 0 where skilldetails = (%s)"
params = (SkillName,)
cursor.execute(query, params)
conn.commit()
cursor.close()
conn.close()
#return JSONResponse(content={"message": "Here's your interdimensional portal." , "mes1":"data2"}) |