#Fast APi Packages from fastapi import FastAPI,File from pydantic import BaseModel import json #SkillExtraction Packages import psycopg2 import pandas as pd import numpy as np from sentence_transformers import SentenceTransformer import spacy from sklearn.metrics.pairwise import cosine_similarity from spacy.matcher import PhraseMatcher from skillNer.general_params import SKILL_DB from skillNer.skill_extractor_class import SkillExtractor from psycopg2.extensions import register_adapter, AsIs register_adapter(np.int64, AsIs) import warnings warnings.filterwarnings('ignore') #Custom Classes for endpoints from DbConnection import DbConnection from UploadFile import UploadOpenFile from SkillExtract import SkillExtractorDetails from ExtractContentsFromFile import ExtractContentFromFile from RemoveSkills import RemoveSkill from AddSkillDetails import AddSkill from SkillMatcher import SkillMatch from OpenAIResponse import OpenAIText import ClassModals import os os.environ['HF_HOME'] = '/hug/cache/' app = FastAPI() nlp = spacy.load("en_core_web_lg") # init skill extractor skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher) model = SentenceTransformer('all-MiniLM-L6-v2') @app.get("/") async def root(): return {"SkillAPI":"SkillAPi Version 0.05"} db_params = DbConnection.GetDbConnection() def parse_csv(df): res = df.to_json(orient="records") parsed = json.loads(res) return parsed @app.post("/UploadJobDescription/") def UploadJobDescription(file: bytes = File(...), FileName: str = "sample.pdf"): text= ExtractContentFromFile.ExtractDataFromFile(FileName,file) returnID = UploadOpenFile.uploadFile(text,FileName,db_params,True) returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,returnID,True) details = returnSkills.split('@') data = {'Data':['Required Skills', 'Soft Skills', 'Good to have Skills'], 'Values':[details[0], details[1], details[2]]} df = pd.DataFrame(data) return parse_csv(df) @app.get("/AllProfileMatchResults") def AllProfileMatchResults(): dbQuery = "select * from profilematch" conn = psycopg2.connect(**db_params) df = pd.read_sql_query(dbQuery, conn) return parse_csv(df) @app.get("/UploadJobDescriptionOpenText/") def UploadOpenText(text : str, filename : str): returnID = UploadOpenFile.uploadFile(text,filename,db_params,True) returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,returnID,True) data = SkillMatch.SkillMatcher(model,db_params,returnID).split(';') dataJson = {'Data':['Best Resume Fit', 'Score', 'ProfileID'], 'Values':[data[0], data[1], data[2]]} df = pd.DataFrame(dataJson) return parse_csv(df) @app.post("/ExtractSkillsByJobID/") def ExtractSkillsByJobID(skill_data: ClassModals.Modals.SkillDetails): returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,skill_data.skillid) details = returnSkills.split('@') skill_data.requiredSkills = details[0] skill_data.softSkills = details[1] skill_data.goodToHaveSkills = details[1] return skill_data @app.delete("/RemoveSkillsByName/") def RemoveSkills(SkillName : str): RemoveSkill.RemoveSkillDetails(db_params,SkillName) return "Skill Removed Successfully" @app.post("/AddSkillDeails/") def AddSkills(Skills : ClassModals.Modals.AddSkillDetails): skilldetailsStr = Skills.SkillName + ',' + Skills.SkillType + ',' + str(Skills.SkillScore) return AddSkill.AddSkillDetails(db_params,skilldetailsStr) @app.post("/UploadProfileFromFile/") def UploadProfileFromFile(file: bytes = File(...), FileName: str = "sample.pdf"): text= ExtractContentFromFile.ExtractDataFromFile(FileName,file) returnID = UploadOpenFile.uploadFile(text,FileName,db_params,False) returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,returnID,False) details = returnSkills.split('@') data = {'Data':['Required Skills', 'Soft Skills', 'Good to have Skills'], 'Values':[details[0], details[1], details[2]]} df = pd.DataFrame(data) return parse_csv(df) class FileText(BaseModel): text: int fname: str @app.get("/UploadProfileOpenText/") def UploadProfileOpenText(text : str, filename : str): #text= ExtractContentFromFile.ExtractDataFromFile(FileName,file) returnID = UploadOpenFile.uploadFile(text,filename,db_params,False) returnSkills = SkillExtractorDetails.SkillExtract(db_params,skill_extractor,returnID,False) details = returnSkills.split('@') data = {'Data':['Required Skills', 'Soft Skills', 'Good to have Skills'], 'Values':[details[0], details[1], details[2]]} df = pd.DataFrame(data) return parse_csv(df) @app.get("/GetMatchProfileByJobId/") def GetMatchProfileByJobId(JobId : int): data = SkillMatch.SkillMatcher(model,db_params,JobId).split(';') dataJson = {'Data':['Best Resume Fit', 'Score', 'ProfileID'], 'Values':[data[0], data[1], data[2]]} df = pd.DataFrame(dataJson) return parse_csv(df) @app.get("/GetOpenAPIResponse/") def GetOpenAPIResponse(query:str, content:str): return OpenAIText.OpenAITextResponse(query,content) #return JSONResponse(content={"message": "Here's your interdimensional portal." , "mes1":"data2"}) #https://vaibhav84-resumeapi.hf.space/docs