File size: 3,502 Bytes
3adca77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import gradio as gr
import cv2
import numpy as np

# Function to compare two images and highlight differences
def compare_images(mockup, ui_screenshot, check_text, check_color, check_spacing):
    # Convert images to numpy arrays
    mockup_array = np.array(mockup)
    ui_screenshot_array = np.array(ui_screenshot)

    # Resize images to the same dimensions
    if mockup_array.shape != ui_screenshot_array.shape:
        height, width = max(mockup_array.shape[0], ui_screenshot_array.shape[0]), max(mockup_array.shape[1], ui_screenshot_array.shape[1])
        mockup_array = cv2.resize(mockup_array, (width, height))
        ui_screenshot_array = cv2.resize(ui_screenshot_array, (width, height))

    # Convert images to grayscale
    mockup_gray = cv2.cvtColor(mockup_array, cv2.COLOR_RGB2GRAY)
    ui_screenshot_gray = cv2.cvtColor(ui_screenshot_array, cv2.COLOR_RGB2GRAY)

    # Compute the absolute difference between the two images
    difference = cv2.absdiff(mockup_gray, ui_screenshot_gray)

    # Threshold the difference image to get a binary image
    _, thresh = cv2.threshold(difference, 30, 255, cv2.THRESH_BINARY)

    # Find contours of the differences
    contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # Create a copy of the original image to draw the differences
    highlighted_image = mockup_array.copy()

    # Draw red circles around the differences
    for contour in contours:
        if cv2.contourArea(contour) > 100:  # Filter out small differences
            x, y, w, h = cv2.boundingRect(contour)
            cv2.circle(highlighted_image, (x + w // 2, y + h // 2), 10, (255, 0, 0), -1)

    # Convert the highlighted image back to RGB for display
    highlighted_image_rgb = cv2.cvtColor(highlighted_image, cv2.COLOR_BGR2RGB)

    # Generate a report based on the selected options
    report = "Comparison Report:\n"
    if check_text:
        report += "Text Differences: This feature requires advanced text recognition.\n"
    if check_color:
        report += "Color Differences: This feature requires color analysis.\n"
    if check_spacing:
        report += "Spacing Differences: This feature requires layout analysis.\n"

    return highlighted_image_rgb, report

# Create the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("## Welcome to the UI Difference Spotter!")
    gr.Markdown("Please upload the design mockup and the developed UI screenshot you want to compare.")

    with gr.Row():
        mockup_upload = gr.Image(label="Upload Design Mockup", type="pil")
        ui_screenshot_upload = gr.Image(label="Upload Developed UI Screenshot", type="pil")

    with gr.Row():
        check_text = gr.Checkbox(label="Check Text Differences", value=True)
        check_color = gr.Checkbox(label="Check Color Differences", value=True)
        check_spacing = gr.Checkbox(label="Check Spacing Differences", value=True)

    with gr.Row():
        compare_button = gr.Button("Compare Images")

    with gr.Row():
        highlighted_image = gr.Image(label="Highlighted Differences")
        report_output = gr.Textbox(label="Comparison Details", interactive=False)

    # Define the event listener for the compare button
    compare_button.click(
        fn=compare_images,
        inputs=[mockup_upload, ui_screenshot_upload, check_text, check_color, check_spacing],
        outputs=[highlighted_image, report_output]
    )

# Launch the Gradio app
if __name__ == "__main__":
    demo.launch(show_error=True)