Spaces:
Runtime error
Runtime error
File size: 1,231 Bytes
8ed1440 d3d22f9 8ed1440 d3d22f9 d378450 9d2f6bd 8ed1440 cb552e6 9d2f6bd 8ed1440 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
#from huggingface_hub import login
#login(token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj")
my_token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj"
# Load model and tokenizer
model_name = "meta-llama/CodeLlama-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(model_name, token=my_token)
model = AutoModelForCausalLM.from_pretrained(model_name, token=my_token)
# Define the inference function
def generate_code(prompt):
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True)
# Generate code using the model
outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1)
# Decode the generated output to a string
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_code
# Create Gradio interface
interface = gr.Interface(
fn=generate_code,
inputs="text",
outputs="text",
title="CodeLlama-7b Python Code Generator",
description="Generate Python code using the CodeLlama-7b model. Simply input a prompt and get back the generated code.",
)
# Launch the Gradio interface
interface.launch() |