import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM #from huggingface_hub import login #login(token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj") my_token="hf_VExbFezQQyzOnbpBoRgNxXjiRfMFTGUyj" # Load model and tokenizer model_name = "meta-llama/CodeLlama-7b-hf" tokenizer = AutoTokenizer.from_pretrained(model_name, token=my_token) model = AutoModelForCausalLM.from_pretrained(model_name, token=my_token) # Define the inference function def generate_code(prompt): # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt", truncation=True, padding=True) # Generate code using the model outputs = model.generate(inputs["input_ids"], max_length=100, num_return_sequences=1) # Decode the generated output to a string generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_code # Create Gradio interface interface = gr.Interface( fn=generate_code, inputs="text", outputs="text", title="CodeLlama-7b Python Code Generator", description="Generate Python code using the CodeLlama-7b model. Simply input a prompt and get back the generated code.", ) # Launch the Gradio interface interface.launch()