File size: 2,812 Bytes
3d70783
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
### 1. Imports and class names app ###
import gradio as gr 
import os
import torch

from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, Dict

# Setup class names
with open('class_names.txt', 'r') as f:
    class_names = [food_name.strip() for food_name in f.readlines()]

### 2. Model and transforms preparation ###
# Create model and transforms
effnetb2, effnetb2_transforms = create_effnetb2_model()

# Load saved weight
effnetb2.load_state_dict(torch.load(f='09_pretrained_effnetb2_feature_extractor_food101_20_percent.pth',
                                    map_location=torch.device('cpu')))  # load to cpu

### 3. Predict function
def predict(img) -> Tuple[Dict, float]:
    # Start a timer
    start_time = timer()

    # Transform the input image for use with EffNetB2
    transformed_img = effnetb2_transforms(img).unsqueeze(dim=0)  # unsqueeze = add batch dimension on 0th

    # Put model into eval mode, make prediction
    with torch.inference_mode():
        effnetb2.eval()
        
        # Pass the transformed image through the model and turn the prediction logits into probabilities
        pred_prob = effnetb2(transformed_img).softmax(dim=1)

    # Create a prediction label and prediction probability dictionary
    pred_labels_and_probs = {class_names[i]: pred_prob[0][i].item() for i in range(len(class_names))}

    # Calcualte pred time
    end_time = timer()
    inference_time = round(end_time - start_time, 4)

    # Return pred dict and pred time
    return pred_labels_and_probs, inference_time

### 4. Gradio app ###
# Create title, description and aritcle
title = 'FoodVision Big πŸ”πŸ‘οΈπŸ’ͺ'
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/0.16/models/generated/torchvision.models.efficientnet_b2.html#efficientnet-b2) computer vision model to classify images 101 classes of food from the Food101 dataset.'
article = 'Created at [11. Turning our FoodVision Big model into a deployable app](https://www.learnpytorch.io/09_pytorch_model_deployment/#11-turning-our-foodvision-big-model-into-a-deployable-app).'

# Create example list
example_list = [['examples/' + example] for example in os.listdir('examples')]

# Create the Gradio demo
demo = gr.Interface(fn=predict,  # maps inputs to outputs
                    inputs=gr.Image(type='pil'),
                    outputs=[gr.Label(num_top_classes=5, label='Predictions'),
                             gr.Number(label='Prediction time (s)')],
                    examples=example_list,
                    title=title,
                    description=description,
                    article=article)

# Launch the demo!
demo.launch(debug=False,  # print errors locally?
            share=True)  # generate a publically shareable URL