Spaces:
Sleeping
Sleeping
### 1. Imports and class names setup ### | |
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Dict, Tuple | |
# Setup class names | |
class_names = ['pizza', 'steak', 'sushi'] | |
### 2. Model and transforms perparation ### | |
effnetb2, effnetb2_transforms = create_effnetb2_model() | |
# Load save weights | |
effnetb2.load_state_dict(torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth', | |
map_location=torch.device('cpu'))) # load the model to the CPU | |
### 3. Predict function ### | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
transformed_img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th | |
# Put model into eval mode, make prediction | |
with torch.inference_mode(): | |
effnetb2.eval() | |
# Pass the transformed image through the model and turn the prediction logits into probabilities | |
pred_prob = effnetb2(transformed_img).softmax(dim=1) | |
# Create a prediction label and prediction probability dictionary | |
pred_labels_and_probs = {class_names[i]: pred_prob[0][i].item() for i in range(len(class_names))} | |
# Calcualte pred time | |
end_time = timer() | |
inference_time = round(end_time - start_time, 4) | |
# Return pred dict and pred time | |
return pred_labels_and_probs, inference_time | |
### 4. Gradio app ### | |
# Create title, description and aritcle | |
title = 'FoodVision Mini ππ₯©π£' | |
description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/0.16/models/generated/torchvision.models.efficientnet_b2.html#efficientnet-b2) computer vision model to classify images as pizza, steak, sushi.' | |
article = 'Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface).' | |
# Create example list | |
example_list = [['examples/' + example] for example in os.listdir('examples')] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, # maps inputs to outputs | |
inputs=gr.Image(type='pil'), | |
outputs=[gr.Label(num_top_classes=3, label='Predictions'), | |
gr.Number(label='Prediction time (s)')], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, # print errors locally? | |
share=True) # generate a publically shareable URL | |