VanLinLin commited on
Commit
83c97bd
Β·
1 Parent(s): 0973e41

initial commit

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
37
+ .pth filter=lfs diff=lfs merge=lfs -text
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d19770ada64e5a76b25a703a2b1a2a2a67cdf479d11f38876a968166add3274
3
+ size 31313869
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+ from model import create_effnetb2_model
6
+ from timeit import default_timer as timer
7
+ from typing import Dict, Tuple
8
+
9
+
10
+ # Setup class names
11
+ class_names = ['pizza', 'steak', 'sushi']
12
+
13
+ ### 2. Model and transforms perparation ###
14
+ effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
15
+
16
+ # Load save weights
17
+ effnetb2.load_state_dict(torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth',
18
+ map_location=torch.device('cpu'))) # load the model to the CPU
19
+
20
+ ### 3. Predict function ###
21
+ def predict(img) -> Tuple[Dict, float]:
22
+ # Start a timer
23
+ start_time = timer()
24
+
25
+ # Transform the input image for use with EffNetB2
26
+ transformed_img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th
27
+
28
+ # Put model into eval mode, make prediction
29
+ with torch.inference_mode():
30
+ effnetb2.eval()
31
+
32
+ # Pass the transformed image through the model and turn the prediction logits into probabilities
33
+ pred_prob = effnetb2(transformed_img).softmax(dim=1)
34
+
35
+ # Create a prediction label and prediction probability dictionary
36
+ pred_labels_and_probs = {class_names[i]: pred_prob[0][i].item() for i in range(len(class_names))}
37
+
38
+ # Calcualte pred time
39
+ end_time = timer()
40
+ inference_time = round(end_time - start_time, 4)
41
+
42
+ # Return pred dict and pred time
43
+ return pred_labels_and_probs, inference_time
44
+
45
+ ### 4. Gradio app ###
46
+ # Create title, description and aritcle
47
+ title = 'FoodVision Mini πŸ•πŸ₯©πŸ£'
48
+ description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/0.16/models/generated/torchvision.models.efficientnet_b2.html#efficientnet-b2) computer vision model to classify images as pizza, steak, sushi.'
49
+ article = 'Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface).'
50
+
51
+ # Create example list
52
+ example_list = [['examples/' + example] for example in os.listdir('examples')]
53
+
54
+ # Create the Gradio demo
55
+ demo = gr.Interface(fn=predict, # maps inputs to outputs
56
+ inputs=gr.Image(type='pil'),
57
+ outputs=[gr.Label(num_top_classes=3, label='Predictions'),
58
+ gr.Number(label='Prediction time (s)')],
59
+ examples=example_list,
60
+ title=title,
61
+ description=description,
62
+ article=article)
63
+
64
+ # Launch the demo!
65
+ demo.launch(debug=False, # print errors locally?
66
+ share=True) # generate a publically shareable URL
examples/2582289.jpg ADDED
examples/3622237.jpg ADDED
examples/592799.jpg ADDED
model.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from torch import nn
4
+
5
+
6
+ def create_effnetb2_model(num_classese: int = 3, # default output classes = 3 (pizza, steak , sushi)
7
+ seed: int = 42):
8
+ # 1, 2, 3 Create EffNetB2 pretained weights, transforms and model
9
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
10
+ transforms = weights.transforms()
11
+ model = torchvision.models.efficientnet_b2(weights=weights)
12
+
13
+ # 4. Freeze all layers in the base model
14
+ for param in model.parameters():
15
+ param.requires_grad = False
16
+
17
+ # 5. Change classifier head with random seed for reproducibility
18
+ torch.manual_seed(seed)
19
+ model.classifier = nn.Sequential(
20
+ nn.Dropout(p=.3, inplace=True),
21
+ nn.Linear(in_features=1408, out_features=num_classese)
22
+ )
23
+
24
+ return model, transforms
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==2.0.1
2
+ torchvision==0.15.2
3
+ gradio==4.14.0