### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Dict, Tuple # Setup class names class_names = ['pizza', 'steak', 'sushi'] ### 2. Model and transforms perparation ### effnetb2, effnetb2_transforms = create_effnetb2_model() # Load save weights effnetb2.load_state_dict(torch.load(f='09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth', map_location=torch.device('cpu'))) # load the model to the CPU ### 3. Predict function ### def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 transformed_img = effnetb2_transforms(img).unsqueeze(dim=0) # unsqueeze = add batch dimension on 0th # Put model into eval mode, make prediction with torch.inference_mode(): effnetb2.eval() # Pass the transformed image through the model and turn the prediction logits into probabilities pred_prob = effnetb2(transformed_img).softmax(dim=1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = {class_names[i]: pred_prob[0][i].item() for i in range(len(class_names))} # Calcualte pred time end_time = timer() inference_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, inference_time ### 4. Gradio app ### # Create title, description and aritcle title = 'FoodVision Mini 🍕🥩🍣' description = 'An [EfficientNetB2 feature extractor](https://pytorch.org/vision/0.16/models/generated/torchvision.models.efficientnet_b2.html#efficientnet-b2) computer vision model to classify images as pizza, steak, sushi.' article = 'Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/#74-building-a-gradio-interface).' # Create example list example_list = [['examples/' + example] for example in os.listdir('examples')] # Create the Gradio demo demo = gr.Interface(fn=predict, # maps inputs to outputs inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number(label='Prediction time (s)')], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=False, # print errors locally? share=True) # generate a publically shareable URL