import torch import torchvision from torch import nn def create_effnetb2_model(num_classese: int = 3, # default output classes = 3 (pizza, steak , sushi) seed: int = 42): # 1, 2, 3 Create EffNetB2 pretained weights, transforms and model weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT transforms = weights.transforms() model = torchvision.models.efficientnet_b2(weights=weights) # 4. Freeze all layers in the base model for param in model.parameters(): param.requires_grad = False # 5. Change classifier head with random seed for reproducibility torch.manual_seed(seed) model.classifier = nn.Sequential( nn.Dropout(p=.3, inplace=True), nn.Linear(in_features=1408, out_features=num_classese) ) return model, transforms