Spaces:
Runtime error
Runtime error
import re | |
import spaces | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
import torch | |
from peft import PeftModel, PeftConfig | |
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/BhashiniLLM") | |
# quantization_config = BitsAndBytesConfig( | |
# load_in_4bit=True, | |
# bnb_4bit_use_double_quant=True, | |
# bnb_4bit_quant_type="nf4", | |
# bnb_4bit_compute_dtype=torch.float16) | |
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/BhashiniLLM", | |
# device_map="auto", | |
# quantization_config=quantization_config, | |
# torch_dtype =torch.float16, | |
# low_cpu_mem_usage=True, | |
# use_safetensors=True, | |
# ) | |
# # Assuming you have your HF repository in this format: "your_username/your_model_name" | |
# model_id = "FlawedLLM/BhashiniLLM" | |
# # Load the base model (the one you fine-tuned with LoRA) | |
# base_model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto') # Load in 8-bit for efficiency | |
# for param in base_model.parameters(): | |
# param.data = param.data.to(torch.float16) # or torch.float32 | |
# # Load the LoRA adapter weights | |
# model = PeftModel.from_pretrained(base_model, model_id) | |
# tokenizer = AutoTokenizer.from_pretrained(model_id) | |
config = PeftConfig.from_pretrained("FlawedLLM/BhashiniLLM") | |
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3-8b-bnb-4bit", device_map='auto') | |
model = PeftModel.from_pretrained(base_model, "FlawedLLM/BhashiniLLM") | |
def chunk_it(input_command): | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Instruction: | |
{} | |
### Input: | |
{} | |
### Response: | |
{}""" | |
inputs = tokenizer( | |
[ | |
alpaca_prompt.format( | |
''' | |
You will receive text input that you need to analyze to perform the following tasks: | |
transaction: Record the details of an item transaction. | |
last n days transactions: Retrieve transaction records for a specified time period. | |
view risk inventory: View inventory items based on a risk category. | |
view inventory: View inventory details. | |
new items: Add new items to the inventory. | |
old items: View old items in inventory. | |
report generation: Generate various inventory reports. | |
Required Parameters: | |
Each task requires specific parameters to execute correctly: | |
transaction: | |
ItemName (string) | |
ItemQt (quantity - integer) | |
Flow (string: "in" or "out") | |
ShelfNo (string or integer) | |
last n days transactions: | |
ItemName (string) | |
Duration (integer: number of days, default: 30) | |
view risk inventory: | |
RiskType (string: "overstock", "understock", or Null for all risk types) | |
view inventory: | |
ItemName (string) | |
ShelfNo (string or integer) | |
new items: | |
ItemName (string) | |
SellingPrice (number) | |
CostPrice (number) | |
old items: | |
ShelfNo (string or integer) | |
report generation: | |
ItemName (string) | |
Duration (integer: number of days, default: 6) | |
ReportType (string: "profit", "revenue", "inventory", or Null for all reports) | |
ALWAYS provide output in a JSON format.''', # instruction | |
input_command, # input | |
"", # output - leave this blank for generation! | |
) | |
], return_tensors = "pt").to("cuda") | |
outputs = model.generate(**inputs, max_new_tokens = 216, use_cache = True) | |
tokenizer.batch_decode(outputs) | |
reply=tokenizer.batch_decode(outputs) | |
# Regular expression pattern to match content between "### Response:" and "<|end_of_text|>" | |
pattern = r"### Response:\n(.*?)<\|end_of_text\|>" | |
# Search for the pattern in the text | |
match = re.search(pattern, reply[0], re.DOTALL) # re.DOTALL allows '.' to match newlines | |
reply = match.group(1).strip() # Extract and remove extra whitespace | |
return reply | |
iface=gr.Interface(fn=chunk_it, | |
inputs="text", | |
outputs="text", | |
title="Formatter_Pro", | |
) | |
iface.launch(inline=False) |