Spaces:
Runtime error
Runtime error
FlawedLLM
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -42,21 +42,26 @@ import torch
|
|
42 |
# load_in_4bit = True,
|
43 |
# )
|
44 |
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini")
|
45 |
-
# Load model directly
|
46 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
47 |
|
48 |
-
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_9")
|
49 |
-
config = AutoConfig.from_pretrained("FlawedLLM/Bhashini_9") # Load configuration
|
50 |
|
51 |
-
# quantization_config = BitsAndBytesConfig(
|
52 |
-
# load_in_4bit=True,
|
53 |
-
# bnb_4bit_use_double_quant=True,
|
54 |
-
# bnb_4bit_quant_type="nf4",
|
55 |
-
# bnb_4bit_compute_dtype=torch.float16
|
56 |
-
# )
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
model = AutoModelForCausalLM.from_pretrained("FlawedLLM/
|
60 |
|
61 |
@spaces.GPU(duration=300)
|
62 |
def chunk_it(input_command):
|
|
|
42 |
# load_in_4bit = True,
|
43 |
# )
|
44 |
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini")
|
45 |
+
# # Load model directly
|
46 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
|
47 |
|
48 |
+
# tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_9")
|
49 |
+
# config = AutoConfig.from_pretrained("FlawedLLM/Bhashini_9") # Load configuration
|
50 |
|
51 |
+
# # quantization_config = BitsAndBytesConfig(
|
52 |
+
# # load_in_4bit=True,
|
53 |
+
# # bnb_4bit_use_double_quant=True,
|
54 |
+
# # bnb_4bit_quant_type="nf4",
|
55 |
+
# # bnb_4bit_compute_dtype=torch.float16
|
56 |
+
# # )
|
57 |
+
|
58 |
+
# # torch_dtype =torch.float16
|
59 |
+
# model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_9",config=config, ignore_mismatched_sizes=True).to('cuda')
|
60 |
+
# Load model directly
|
61 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
62 |
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained("FlawedLLM/Bhashini_00")
|
64 |
+
model = AutoModelForCausalLM.from_pretrained("FlawedLLM/Bhashini_00").to('cuda')
|
65 |
|
66 |
@spaces.GPU(duration=300)
|
67 |
def chunk_it(input_command):
|